New Insights into the Tribological and Kinetic Attributes of Retaining Rings in CMP

G. Diaz^{1,a}, L. Peckler^{1,b}, Y. Sampurno^{1,2} and A. Philipossian^{1,2}

¹ University of Arizona, Tucson, AZ, USA ² Araca Incorporated, Tucson, AZ, USA

^a Now at CMC
 ^b Now at Intel (PTD)

Outline

Background

- The Stribeck curve and some of the issues associated with it
- The Stribeck+ curve
- Some ILD and copper CMP examples
- Objective
- Polishing apparatus, other hardware and experimental procedures
- Stribeck+ curve applied to retaining rings
- Two "optical illusions"
- The "Directivity" plot
- The "Kinetic" curve and the "implied" ring wear rate
- Wear validation studies
- Summary

Background

- As a 1st approximation, the Stribeck curve helps provide evidence re: extent of contact among wafer, pad and abrasive particles where 3 major lubrication modes can be distinguished.
- Additionally, it helps screen certain consumable sets by determining if and how they contact one another during CMP.
- This can help determine optimal polishing parameters, predict EOL for pads and help engineers avoid certain polishing conditions.

Motivation

- When it comes to traditional Stribeck curves:
 - Many wafers need to be polished at various pressures and sliding velocities – Costly and time consuming.
 - ✤ Generally, only average COF is plotted.
 - COF is measured assuming a constant downforce It is basically the pressure set-point in the controller.
 - V and P are lumped in the Sommerfeld number Their ratio is what seems to count and not their individual values.
 - ✤ No information on COF is available in-between adjacent data points.

A Continuous Run Through 9 Conditions

Example of a Stribeck+ Curve

Selected Stribeck+ vs. Stribeck Curves

Objective

- Characterize PPS and PEEK retaining rings with differently designed slots for copper and ILD applications
 - **Generate, compare and contrast Stribeck and Stribeck+ curves.**
 - Point out the 2 two "optical illusions" associated with Stribeck+ curves and show how "directivity" plots can help overcome them.
- Develop and validate a rapid method to give information on the "inferred" relative wear rate of retaining rings.
 - Define and construct a "kinetic" curve to rapidly predict ring wear rate.
 - Validate the above-proposed methodology through experimentation.

The Araca APD-800 Polisher and Tribometer

AMAT Reflexion Retaining Rings

- Phase 1:
 - PPS and PEEK
 - Sharp Edge vs. Rounded Edge

- ✤ ILD (Fujimi PL-4217) vs. Copper slurry (Fujimi PL-7103)
- Each ring was cycled through multiple pressures and velocities for 3 continuous minutes (see next slide)

A Single 180-second Run

Stribeck+ Step No.	Step Duration (sec)	Pressure (PSI)	Sliding Velocity (m/s)
1	60	2	1.2
2	30	2	1.8
3	30	4	1.8
4	30	6	1.2
5	30	6	1.8

Rings were also polished separately for 1 minute at every pressure-velocity combination with substantial wait-time in between each polish

Rounded Slot – PPS (left) and PEEK (right)

PEEK – Rounded (left) and Sharp (right)

Explaining the St+ Trends

- Stribeck+ curves are continuous in nature In all cases we see that anomalous tribological behaviors do not exist in between polishing conditions
 - **PPS ring has higher COF values than PEEK.**
 - **PPS ring seems to be tribologically more stable than PEEK.**
 - COF values are always higher when ILD slurry is used to polish the ring as compared to copper.
 - Mean COF values are substantially higher for the sharp-slot PEEK ring compared to rounded-slot PEEK when copper slurry is used.
- Temperature differences are consistent with their corresponding COF values.
 - **PPS** runs ~ 4 C warmer than similarly-designed PEEK.
 - Average pad temperature is higher by ~ 2 C when ILD slurry is used as compared to copper.

2 Inherent Issues with Stribeck+ Curves

- The 2 axes are logarithmic:
 - Identical magnitudes of variations in COF and pseudo-Sommerfeld number "appear" tighter in the upper LHS of the plot as compared to those on the lower RHS.
- The ordinate and the abscissa are not independent of one another:
 - COF is inversely proportional to normal force.
 - Pseudo-Sommerfeld number (through applied pressure) is also inversely proportional to normal force.

 These can cause considerable confusion in data interpretation, and will skew cluster shapes.

Let's Digress a Bit – A Violin's Radiation

- RADIATION or DIRECTIVITY refers to sound directionality It is frequency-dependent!
- DIRECTIVITY (Δ) ≡ Ratio of the variance of pressure acting on the top plate to that on the bottom plate.
 - ★ Δ = 1 (isotropic sound omnidirectional).
 - ☆ △ > 1 (anisotropic sound Highly directional).
 - ✤ Below 400 Hz, 0.95 > ∆ > 1.15 for most violins.
 - Beyond this, Δ for commercial violins increases rapidly and reaches 1.35 at 900 Hz and then rises very slowly to 1.45 at 4,000 Hz.
 - For Old Italian violins, past 400 Hz,
 Δ increases rapidly to 1.65 at 900 Hz and then continues to rise further to 2.45 at 4,000 Hz.

Overcoming the "Optical Illusion" re: St+

- We suggest using a supplemental linear-linear graph and plot "DIRECTIVITY" vs. pseudo-Sommerfeld number.
- DIRECTIVITY (Δ) = Ratio of the variance of shear force to that of normal force:

"Directivity" Plot for the PEEK Ring

- Average Δ values start off at 1.1 at 6 PSI and 1.2 m/s.
- As pressure is maintained and sliding velocity is increased to 1.8 m/s, Δ rises sharply to 1.8 – Dramatic increase in shear force fluctuations compared to its normal counterparts.
- As velocity is kept at 1.8 m/s and pressure is lowered to 4 PSI, Δ descends rapidly to 0.9.
 - Further decreases in pressure cause Δ to decrease asymptotically to 0.4 – Here normal force fluctuations dominate.

Stribeck+ Curve for a Retaining Ring

PPS – Rounded Slots

PEEK – Rounded Slots

PEEK – Sharp Slots

Experimental Conditions – Validation Studies

Phase – 2

"Blind" Ring Number	Wear Time (hour)	Pressure (PSI)	Sliding Velocity (m/s)
	4 ½	6	1.2
II	4 ½	6	1.2
III	4 ¹ / ₂	6	1.2
IV	7 ½	6	1.0
V	7 ½	6	1.0
VI	7 ½	6	1.0
VII	7 ½	6	1.0
VIII	7 ½	6	1.0

Validation Studies

Summary

- Stribeck+ curves were utilized to tribologically characterize identically-designed PPS and PEEK rings, as well as PEEK rings with two different slot designs for copper and ILD CMP:
 - **COF for PPS was greater than PEEK**
 - PPS was tribologically more stable than PEEK
 - COF with ILD slurry was greater than copper
 - COF for sharp slots was greater than rounded slots for copper slurry (no differences in COF for the ILD slurry)
 - COF values directly correlated to average pad surface temperatures
- Optical illusions associated with Stribeck+ curves were addressed via a new parameter – DIRECTIVITY
- "Kinetic" plots were introduced for the 1st time to help "infer" relative ring wear rates – Can help engineers choose process parameters that balance wafer RR with ring wear rate.
- Validation studies showed a reasonable correlation between actual and inferred ring wear rates Time savings ~ 90 mins vs. 15 hours!