INVESTIGATION OF NMR-BASED SURFACE AREA MEASUREMENT AS A QUALITY MONITOR FOR NANOPARTICLE SILICA ABRASIVES

Olga Samsonenka, University of Washington Andy Kim, University of Washington Andrea Oehler, Fujimi Inki Kim, Intel

Good Control of Silica Particle Size and Contamination is Important for CMP

- 2
- Big nanoparticles permanently damage transistors during polishing
- Small nanoparticles don't polish well and are harder to wash off in later stages
- Chemical contamination of slurries may damage transistors (for example, iron)
- Improper shipment and/or storage may alter slurries' properties and be undetected

Xigo Area Quant Has a Number of Benefits as a Quality Control Instrument

Benefits

- Uses wet samples with 1-60% concentration
- Measures relaxation rate that is directly proportional to surface area
- Able to perform fast (less than 1 min) and continuous measurements

Picture (xigonanotools.com)

NMR Equipment

1. Short radio frequency pulse excited the coil at ~14 MHz.

2. Produced magnetic field changes the orientation of protons' spins.

3. As the spins relax and realign with static magnetic field B_0 , a decaying voltage is produced in the coil – "free induction decay".

Sample T₂ (transverse) Graph

4. A combination of specific pulse sequences allows to determine sample's T_1 or T_2 relaxation times.

http://www.sprawls.org/mripmt/MRI04/index.html

Wikipedia.org

NMR Relaxation Time of H Near Particle Surface is Very Short

Due to constrained mobility H in water molecules around nanoparticles relax at faster rate compared to H in free water <u>Data Analysis:</u>

Relaxation rate: R = 1/T

$$\mathbf{R}_{\mathrm{av}} = \mathbf{k}_{\mathrm{a}} \mathbf{S} \boldsymbol{\psi}_{\mathrm{p}} + \mathbf{R}_{\mathrm{b}}$$

- R_{av} average relaxation rate (the reading)
- \square R_b bulk relaxation rate
- k_a specific surface relaxivity
- S total surface area of particles per unit weight
- ψ_p volume fraction of particles

Research Questions

- Does temperature affect the measurements?
- How reliable and stable are the measurements?
- Does the signal depend on the chemistry of the solution? Is k_a affected by background electrolyte concentration?
- What is the lowest Fe detectability limit? Does it depend on the type iron compound and phase?

1. Temperature Dependence of T₂

- □ For every degree C, T₂ changes by 2%
- Temperature controlled cell is needed for better measurements
- Inline metrology may not be feasible if significant temperature swings are present

2. Precision of "Fast" Measurements

Small deviations in T_2 signal when the measurements are taken within minutes apart

2. Stability of T₂ Measurements Over Time

- □ For slow aggregation induced by low salt, T₂ does not show a systematic change when the size increases by a few nanometers
- □ Large fluctuations in T₂ signal are seen
- Presence of significant outliers is detected over timescale of several hours

3. Chemistry: effect on k_a

□ For TM-50, k_a varied by about 1% as electrolyte (KNO₃) was increased.

3. Chemistry: effect on calculated area

12

For given nanoparticles for every 0.1 wt% [NH₃/NH₄⁺] added

- T_2 goes up by 24 ms
- **Calculated** surface area of the particles appears to be smaller by 1.3 m²/g

The effect of ammonia on T_2 and indicated surface area may be substantial depending on the specs

4. Detection of Insoluble Iron (Fe_xO_y) at ~10⁻⁵ M

Mass concentration of Fe_xO_y added

Insoluble iron oxide can be detected at low concentrations of ~10⁻⁵ M

4. Detection of Soluble Iron (FeCl₃) at ~10⁻⁴ M

14

 Soluble iron salts can be detected at low concentrations of ~10⁻⁴ M
Detectability limit may depend on silica solids loading

Summary

- 15
- □ Reliable measurements require temperature control
- □ Effects of chemistry on relaxation rate and indicated surface area can be small but significant depending on product specifications
- NMR equipment is very good at quickly detecting iron contamination at levels of 10-100 ppm
- $\hfill\square$ More investigation is needed of precision and deviations in T_2 signal
 - **Bottom line: the technique is promising but more work is needed to reduce measurement variation**

¹⁶ Thank you for your attention!

Questions?