3D Trajectories, Diffusion, and Interaction Energies of Ceria Particles on Glass Surfaces

by

Akshay Gowda,¹ Jihoon Seo,¹ Panart Khajornrungruang,² Satomi Hamada,³ S.V. Babu^{1,*}

¹Center for Advanced Materials Processing, Clarkson University, Potsdam, USA. ²Department of Mechanical Information Science and Technology, Kyushu Institute of Technology, lizuka-shi, Fukuoka, Japan ³Technologies, R&D Division, EBARA Corporation, Fujisawa-shi, Kanagawa, Japan

- Introduction
- Principle of evanescent wave microscopy
- Results

2D and 3D trajectories, Diffusion coefficients and Interaction potentials
Cleaning of ceria particles adsorbed at pH 3, pH 5 and pH 7

- Conclusions
- Acknowledgements

Why ceria-silica interaction ? - Motivation of this research

J. Seo, J. W. Lee, J. Moon, W. Sigmund, and U. Paik, ACS Appl. Mater. Interfaces, 6, 7388 (2014) L. M. Cook, J. Non-Cryst. Solids, 120, 152 (1990)

Principle of evanescent wave (EW) microscopy

$$\beta = \frac{4\pi}{\lambda} \sqrt{\left(n_1 \sin \theta_i\right)^2 - n_2^2}$$

Experimental setup

Real time imaging of ceria particles on glass film

Agglomeration of ceria at pH 7

Schematic of the procedure to calculate interaction potentials

D. C. Prieve, Adv. Colloid Interface Sci., 82, 93 (1999)

2D trajectories, histograms of particle displacements and MSD vs time

Ceria particle cleaning procedure

Procedure

-Lens covered with ceria particles was washed multiple times. -Each time with 40 mL of pH adjusted DI water for 20s

Number of residual particles vs number of washes

- 1. Evanescent wave microscopy is a powerful tool to study particle-surface interactions.
- 2. Ceria particles at pH 5.0 (D_{3D} = 3.8×10⁻³ µm²/s) and pH 7.0 (D_{3D} = 45×10⁻³ µm²/s) exhibited faster diffusion near glass surface than at pH 3.0 (D_{3D} = 1.2×10⁻³ µm²/s)
- 3. As pH increased from 3.0 to 7.0, the most probable separation distance h_{min} of ceria particle from glass surface increased from 11 to 60 nm.
- 4. Ceria particles adsorbed at higher pH can be more easily cleaned.
- 5. Charge repulsion is shown to be a key driver towards cleaning performance.
- 6. While charge repulsion is enough to clean larger ceria particles, it is not efficient in removing smaller particles

THANK YOU!