Almost Complete Removal of Sub-90 nm Ceria Particles from Silicon Dioxide Surfaces

Jihoon Seo, Akshay Gowda, and S.V. Babu

The Center for Advanced Materials Processing (CAMP), Clarkson University

Clarkson UNIVERSITY

defy convention m

- 1. Introduction
- 2. Physico-chemical Properties of Ceria Particles with different sizes : Contamination and Cleaning
- 3. H₂O₂-NH₄OH Mixtures and Their Optimization
- 4. Investigation of Mechanism of the Cleaning of Ceria Particles using H₂O₂-based Alkaline Solutions from Silicon Dioxide Surfaces
- 5. Summary

Trends of Ceria Slurries

- \cdot High SiO₂ removal rate
- · High crystallinity
- Tunable particle size
- Mass production
- · Facet shape
- Poor size distribution
- · Relatively high scratch

- Uniform size distribution
- · Spherical shape
- · Low scratch
- · High cost
- Relatively Low SiO₂ RR

Interaction between Ceria particle and SiO₂ surface

	Ac	dsorption consta	Int
	K _F	1/n	R ²
S-CeO ₂	0.0570	0.6771	0.9646
M-CeO ₂	0.0207	0.7135	0.9639
L-CeO ₂	0.0048	0.7650	0.9797

4

Piranha(98% H₂SO₄ : 30% H₂O₂ -4:1)at 90 ~ 120 °C

-Removal of organic contaminants

2 SC-1 (29% NH₄OH : 30% H₂O₂ : H₂O – 1 : 1 : 5) at 80 ~ 90°C

-Removal of particles and organic contaminants

3 SC-2 (37% HCI : 30% H_2O_2 : $H_2O - 1 : 1 : 5$) at 80 ~ 90 °C

-Removal of metallic contaminants

4 DHF (dilute HF, typically less than 0.5 vol% of 47% HF) at 25 $^{\circ}$ C

-Removal of a thin oxide layer

1. Introduction

- 2. Physico-chemical Properties of Ceria Particles with different sizes : Contamination and Cleaning
- 3. H₂O₂-NH₄OH Mixtures and Their Optimization
- 4. Investigation of Mechanism of the Cleaning of Ceria Particles using H₂O₂-based Alkaline Solutions from Silicon Dioxide Surfaces
- 5. Summary

Physico-chemical properties of ceria particles with different sizes

	S _{BET} (m²/g)	d _{BET} ^a (nm)	d _{TEM} ^b (nm)	d _{DLS} ^c (nm)	Ce ³⁺ (%)
10 nm-ceria	84.3	10 nm	10 nm	36 nm	26.3 %
30 nm-ceria	28.8	29 nm	29 nm	81 nm	18.4 %
90 nm-ceria	8.0	98 nm	104 nm	193 nm	15.0 %

Table. Physicochemical properties of ceria particles with different sizes.^aObtained from Solvay. ^bCalculated from TEM image. ^cMeasured using DLS method

J. Seo, A. Gowda, and S.V. Babu., ECS J Sold State SC, Submitted (2018)

Our lab-based evaluation method for cleaning study

1st) Preparation of contaminated coupon

Size-dependent Cleaning Efficiency

SC1 solution consisting of 1:1:5 (v/v/v) mixture of NH₄OH (30 wt%)/H₂O₂ (30 wt%)/DIW

Number of ceria particles before and after SC1 Cleaning

CeO₂ (initial)

9

Design of experiments (DOE)

Sample Number	H ₂ O ₂	NH₄OH	DIW
1	100	0	0
2	0	100	0
3	0	0	100
4	50	50	0
5	50	0	50
6	0	50	50
7	66.67	16.67	16.67
8	16.67	66.67	16.67
9	16.67	16.67	66.67
10	33.3	33.3	33.3

Fitting model,

Volume % mixture

Augmented simplex-centroid design used to optimize

composition of H_2O_2 -NH₄OH mixtures

 x_1 (30 wt% H₂O₂), x_2 (30 wt% NH₄OH) and x_3 (H₂O)

Logit transformation $Y = \ln(y/(1-y))$ where v is the cleaning efficiency expressed in the range of 0 to 1. 10

J. Seo, A. Gowda, and S.V. Babu., ECS J Sold State SC, Submitted (2018)

H₂O₂-NH₄OH mixtures and Their Optimization

Summary of Optimization of H₂O₂-based Alkaline Solutions

Solution	H_2O_2	NH_4OH	DIW	pН	Rq (nm)		Cleaning Efficiency	
number	(30 W1%)	(30 W1%)				10 nm	30 nm	90 nm
1	100	0	0	4.5	0.6	<5 %	<5 %	<5 %
2	0	100	0	13.7	0.9	19 %	23 %	60 %
3	0	0	100	6.0	0.6	<5.0 %	<5.0 %	<5 %
4	50	50	0	13.2	0.8	98 %	99 %	99 %
5	50	0	50	4.7	0.6	<5 %	<5 %	<5 %
6	0	50	50	13.5	0.8	<5 %	<5 %	<5 %
7	66.66	16.67	16.67	12.5	0.7	28 %	56 %	89 %
8	16.67	66.66	16.67	13.4	0.7	27 %	62 %	89 %
9	16.67	16.67	66.66	12.8	0.7	31 %	68 %	90 %
10	33.3	33.3	33.3	12.9	0.8	43 %	89 %	99 %
SC1	14.3	14.3	71.4	12.0	0.7	19 %	58 %	94 %

Table. Surface roughness (Rq) and cleaning efficiencies of the ten compositions tested based on full cubicmodel, and SC1 solution.

H₂O₂-NH₄OH mixtures and Their Optimization

Summary of Optimization of H₂O₂-NH₄OH mixtures

A contour plot of cleaning efficiencies showing the synergistic effect of H₂O₂ (30 wt%), NH₄OH (30 wt%), and H₂O mixtures; 90 nm-ceria, 30 nm-ceria, and 10 nm-ceria.. J. Seo, A. Gowda, and S.V. Babu., ECS J Sold State SC, Submitted (2018)

- 1. Introduction
- 2. Physico-chemical Properties of Ceria Particles with different sizes
- 3. H₂O₂-NH₄OH Mixtures and Their Optimization
- 4. Investigation of Mechanism of the Cleaning of Ceria Particles using H₂O₂-based Alkaline Solutions from Silicon Dioxide Surfaces
- 5. Summary

$$\mathbf{H}_{2}\mathbf{O}_{2} + \mathbf{OH}^{-} \stackrel{K_{eq}}{\longleftrightarrow} \mathbf{HO}_{2}^{-} + \mathbf{H}_{2}\mathbf{O} \qquad pK_{a} = 11.6$$
where $K_{eq} = \frac{[\mathrm{HO}_{2}^{-}]}{[\mathrm{HO}^{-}][\mathrm{H}_{2}\mathrm{O}_{2}]} = \frac{K_{\mathrm{ion}}}{K_{\mathrm{W}}} \qquad K_{\mathrm{ion}} = \frac{[\mathrm{H}^{+}][\mathrm{HO}_{2}^{-}]}{[\mathrm{H}_{2}\mathrm{O}_{2}]} (2.24 \times 10^{-12} \mathrm{ mol/L at } 25 \mathrm{ ^{\circ}C}) \mathrm{ for } \mathrm{H}_{2}\mathrm{O}_{2}$
 $K_{\mathrm{W}} \mathrm{ for water is } 1.0 \times 10^{-14} \mathrm{ mol}^{2}/\mathrm{L}^{2} \mathrm{ at } 25 \mathrm{ ^{\circ}C}$

 $X = starting molar concentration of NH_4OH$

 $Y = starting molar concentration of H_2O_2$

Z = formed molar concentration of $[HO_2^-]$ at equilibrium

[HO⁻] and [H₂O₂] are the concentrations of hydroxyl ion and undecomposed hydrogen peroxide at equilibrium, respectively, which gives [HO⁻] = X-Z and [H₂O₂] = Y-Z

$$K_{eq} = \frac{[HO_2^-]}{[HO^-][H_2O_2]} = \frac{Z}{(X-Z)(Y-Z)}$$

 $\begin{bmatrix} HO_2^{-1} \end{bmatrix} = \frac{R - \sqrt{R^2 - 4XY}}{2} \text{ where } R = X + Y + 1/K_{eq} \qquad \begin{bmatrix} HO_2^{-1} \end{bmatrix} \text{ has a maximum when } R^2 = 4 XY \\ Maximum value of [HO_2^{-1}] = X = Y \\ 14 \end{bmatrix}$

Calculated molar concentration of perhydroxyl anion of cleaning solutions and their cleaning efficiencies

Cleaning efficiency as a function of perhydroxyl ions in mixtures of H₂O₂-based alkaline cleaning solution

Solution Number	Perhydroxyl Cleaning Unps (mol/L) Efficiency) y
		10 nm	30 nm	90 nm
1	0.00	<5 %	<5 %	<5 %
2	0.00	19 %	23 %	60 %
3	0.00	<5.0 %	<5.0 %	<5 %
4	3.68	98 %	99 %	99 %
5	0.00	<5 %	<5 %	<5 %
6	0.00	<5 %	<5 %	<5 %
7	1.23	28 %	56 %	89 %
8	1.60	27 %	62 %	89 %
9	1.23	31 %	68 %	90 %
10	2.45	43 %	89 %	99 %
SC1	1.05	19 %	58 %	94 %
NH ₄ OH-1	4.13	99 %	99 %	99 %
KOH-1	3.26	67 %	95 %	97 %
KOH-2	2.17	41 %	82 %	96 %
KOH-3	0.93	14 %	41 %	89 %
KOH-4	4.13	98 %	99 %	98 %

Cleaning mechanism in H_2O_2 -based alkaline solutions and breakage of Ce-O-Si bonds

FT-IR spectra of ceria particles in the region of 1800-600 cm⁻¹. As-received, silicate (0.01 wt%) silicate (0.1 wt%) covered 10 nm-ceria particles that were reacted with <u>four different solutions (H2O, H2O2 (30 wt%), NH4OH (30 wt%), and H2O2-NH4OH mixture (50/50 volume ratios)</u>.

Schematic illustration of the removal of ceria particles by H_2O_2 -based alkaline cleaning solution

Bond type		Bond dissociation energy (kJ/mol)
Perhydroxyl anion	0-0	210
(OOH)	O-H	336
Hydroxyl ion	O-H	487
	Ce-O	790
66-0-21	Si-O	452

Table. Known binding energy data

J. Seo, A. Gowda, and S.V. Babu., ECS J Sold State SC, Submitted (2018)

- 1. Introduction
- 2. Physico-chemical Properties of Ceria Particles with different sizes
- 3. H₂O₂-NH₄OH Mixtures and Their Optimization
- 4. Investigation of Mechanism of the Cleaning of Ceria Particles using H₂O₂-based Alkaline Solutions from Silicon Dioxide Surfaces
- 5. Summary

Smaller ceria particles are more difficult to remove from oxide surfaces after CMP.

We showed that high pH H_2O_2 -based cleaning solutions, aided by ultrasonic energy, can almost completely remove ceria particles down to 10 nm in size as determined by AFM imaging and counting.

Highest removal efficiencies were obtained when the molar concentration of the perhydroxyl ions $[HO_2^{-1}]$ is the highest possible in the cleaning solution.

- 1. Dr. S.V. Babu
- 2. Ebara Corporation
- 3. Solvay

