The Impact of Sample Containers on Large Particle Count for CMP Slurries

Brian Kim, PhD
Fujimi Corporation R&D

2017 CMPUG Spring Meeting
April 13th, 2017, Portland OR
Overview

• Problem statement
• LPC sources and measurement
• Sample bottles and its evaluation
• Identification of the sources of particles
• Summary
Problem Statement

Problem: A larger variation of LPC was observed for slurry A containing surfactant when sample bottles w/ cap liner was used.
LPC and LPC Sources

- Large Particle Count (LPC) in CMP slurries
 - Particles >0.5 μm
 - LPC is typically measured to predict defects
- Possible sources of LPC:
 - In the slurry: large particles, agglomerates, micelles
 - Extraneous sources: contamination
- In this study LPC contribution from sample bottles was identified and reduced
Variations in LPC Measurement

• Sources of variations in LPC measurement
 • Taking samples
 • Handling samples
 • Preparing samples
 • Stability of LPC measurement tool
• Previous LPC studies at Fujimi:
 • Settling and re-dispersion of large particles
Settling of large particles and its re-dispersion of particle was demonstrated.

Sample preparation right before LPC measurement is important to obtain an accurate measurement.

Bottles Used

• Bottles tested
 • Bottle w/o cap liner (Bottle A)
 • Bottle w/ cap liner (Bottle B)

HDPE: high density polyethylene
PP: polypropylene
Slurry for This Study

• Slurry A
 • HVM slurry: colloidal particle / surfactant
 • Slurry at pH 10

• A typical LPC measurement variation of slurry A including variations by LPC measurement operator and date

<table>
<thead>
<tr>
<th>Particle size (um)</th>
<th>Particle counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0.56</td>
<td>+/- 343</td>
</tr>
<tr>
<td>>0.99</td>
<td>+/- 50</td>
</tr>
</tbody>
</table>
Sample Handling

- Two operators collected samples directly from a production line and delivered to Quality Control (QC)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Bottle handling method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator 1</td>
<td>Bottles tipped over</td>
</tr>
<tr>
<td>Operator 2</td>
<td>Bottles kept upright from the production line to QC for LPC measurement</td>
</tr>
</tbody>
</table>
Sample Preparation for LPC Measurement

- Sample preparation before LPC measurement
 - Slurry samples were shaken on an orbital shaker for 3 min right before sampling
 - Sampling from bottle during the measurement

- Instrument for LPC measurement: Laser-based custom system
Higher LPC was observed from slurry A in bottle B w/ cap liner.
Effect of Bottle Handling

- LPC for bottle B depended on how the sample bottle was handled.
 - Operator 1 tipped the bottle over — slurry contacted bottle cap.

Bottle B: w/ cap liner
Cap liner is demonstrated to be a significant source of LPC

Low LPC was observed from bottle B after the removal of cap liner
Large particles up to 15 μm were observed on a cap liner surface by SEM.
Cleaning Particles from Cap Liner

• Removal of particle from cap liner
 • Typical rinsing with DIW did not help to remove particles on the cap liners
Removal of Particle by Slurry A

- Particles removed by slurry A
 - Bottle B (w/ cap liner) tipped over with slurry A in the bottle
 - Large particles disappeared from cap liner
• By tipping over the bottle B particles on the cap liner could be pulled into the slurry causing higher LPC
Bottle A vs Bottle B

By using bottle A, LPC variation by sample collectors could be minimized.

<table>
<thead>
<tr>
<th>Particle size (um)</th>
<th>Bottle A</th>
<th>Bottle B</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0.56</td>
<td>+/- 58</td>
<td>+/- 343</td>
</tr>
<tr>
<td>>0.99</td>
<td>+/- 17</td>
<td>+/- 50</td>
</tr>
</tbody>
</table>
Summary

- LPC measurement in CMP slurry can be impacted by particles from cap liner of sample bottle
 - High LPC in slurry A was attributed to particles on a cap liner from bottle B
 - LPC from bottle B varied by how samples were collected
 - Uncertain variation by operators could be eliminated by using bottle A (w/o cap liner)

- To ensure that LPC is a valuable metric for monitoring slurry product quality, extraneous modes of LPC generation from sampling process need to be identified and eliminated
The author thank colleagues at Fujimi Corporation, particularly Dr. Jie Lin, Dr. Haiyan Li, Dr. Jimmy Granstrom, Annette Schaper, Dr. Hisashi Takeda, Dr. Charles Poutasse, Dr. Anne Miller, and Dr. Scott Radar, for detailed discussions.