

Holographic Characterization of Agglomerates in CMP Slurries

April 2017

Outline

- Total Holographic Characterization[®] (THC)
- Comparison of THC to other technologies
 - Dynamic Light Scattering (DLS)
 - Scanning Electron Microscopy (SEM)
- Analysis of Silica CMP slurries
 - Thermal cycling studies
 - Dilution
 - Mechanical Stress
 - Ionic strength studies
 - pH studies
- Summary

Spher

Total Holographic Characterization[®]

Capabilities:

- Detect and identify particles in 0 suspensions
- Measure position, size and refractive • index of particles on a single particle basis
- Rapid and automated collection of • quantitative data
- No special sample preparation required •
- 150 µL samples

Detection of CMP Slurry Agglomerates

- Chemical Mechanical Planarization (CMP) Slurries
 - Abrasive and corrosive chemical slurries to polish semiconductor wafers
 - Flatness requirements sub-nanometer
 - Semiconductor industry suffers significant losses from Large Particle Contaminants (LPC)
- Spheryx Inc.
 - Total Holographic Characterization[®] (THC) detects slurry LPC

Source: Wikipedia.org

Spher

Total Holographic Characterization®

b) Microscope records interference pattern
c) Experimental Data
d) Computation fit
e) Differences between fit and data

Comparison yields:

- size
- refractive index
- 3D position
- symmetry

Size/refractive index distribution: for 2000 silica spheres in slurries acquired in 10 minutes

g) Build statistics: Each point characterizes one particle, distribution shows homogeneity

Spher

5

Analysis: From Hologram to Information

- Experimental holograms of various size polystyrene micro-spheres
- Theoretical fits derived using Lorenz-Mie theory
- Radial profiles demonstrating accuracy of the analysis
 - Blue: data
 - Orange: fit
 - Light Blue: std. dev.

Accurate particle size range from 500nm to 10µm

Spher

Technology Comparison

Technology Comparison

	Property characterization	Size	Shape	Density	Porosity	Refractive index	Heterogeneous	Resolution	Sample handling	Wet/Dry
Bulk methods	Dynamic light scattering	Х						High	Simple	W
	Static light scattering	Х						High	Simple	W
	Analytical disk centrifuge	Х		х				Standard	Simple	W
	Acoustic spectroscopy	Х					x	Standard	Simple	W
	X-ray scattering	Х			x		x	Excellent	Complex	D
	Sedimentation	Х		X				Low	Simple	W
	Sieving	Х						Low	Simple	D/W
Single particle methods	Direct particle imaging	Х	X				x	High	Simple	D
	Coulter counter	Х						Standard	Simple	W
	Laser occultation	Х						Standard	Simple	W
	Scanning probe microscopy	Х	X				x	Excellent	Complex	W/D
	Electron microscopy	Х	X		X		x	Excellent	Complex	D
	Particle tracking analysis	Х	X	Х				High	Simple	W
	Holographic characterization	×	X	X	×	X	X	High	Simple	w

8 Spheryx

Comparison With Dynamic Light Scattering (DLS)

- Sample containing 3 different 700nm spheres
 - Polystyrene (PS)
 - PMMA
 - Silica

Unique ability to distinguish by size & composition

Confirmation with Scanning Electron Microscopy (SEM)

THC vs SEM

- 500 nm polystyrene spheres
- THC agrees with SEM results
- THC no sample preparation needed
- Particle resolved
- No input assumptions

Spher

THC Concentration Measurements

Concentration = Particle Counts/Fluid Volume

Agglomerate Detection in Turbid Media

- Difficult to detect and identify contaminants in turbid medium using conventional microscopy
- Total Holographic Characterization[®]
 - Scattered light from small particles (d_p << λ) contributes only to background
 - Effective in turbid medium to detect and characterize large contaminants

GE&R 120nm and 80nm silica slurry (10% wt)

Sphe

THC: Agglomerate Detection

- Single frames from holographic videos
- Silica slurry: uniform background
- Colloidal mixture:
 - Silica slurry doped with 1.5 μm particles
- Silica slurry after thermal cycle

THC can detect large contaminants in slurries

General Engineering & Research 80 nm colloidal silica slurries in DI water

Silica Slurry After Thermal Cycling

Measurements of Dow Ultra-Sol silica slurry (30% wt) yield:

- Few LPC were detected at original concentration
- More and larger LPC present after freezing and thawing

Spheryx 14

Dow Ultra-Sol 2EX silica slurry: 70nm (30.5 % wt) original

Dilution and Agglomeration

- Diluting commercial silica slurries with DI water
- Blue dotted line represents the expected linear reduction of LPC with dilution

Concentration of LPC does not scale linearly with dilution

Dow Ultra-Sol 2EX silica slurry: 70nm (30.5 % wt) original

Mechanically Induced LPC Case 1

- Shear forces (sonication) increase the LPC concentration
- Shear forces REDUCE high index LPC concentration

Spheryx 16

Dow Ultra-Sol 2EX silica slurry: 70nm (30.5 % wt) original

Mechanically Induced LPC Case 2

• Shear forces (by sonication or filtration) increase the LPC concentration

Spher

- Shear forces INDUCE high index LPC concentration
- High index LPC depends on formulation
- Open question: Which type of LPC cause wafer damage?

General Engineering & Research silica slurry: 80nm (5 % wt) in DI water

Ionic Strength Studies in Silica Slurries

120 nm Silica Slurry

120 nm Silica Slurry in 0.1M NaCl Solution

- Adding salt changes the electrostatic screening length
- Increasing ionic strength increases agglomeration
- THC measures sizes and refractive indices of LPC

Ionic Strength Studies in Silica Slurries

Total Holographic Characterization® of 120 nm silica slurry (5 wt%): (a) 10 mM of NaCl (b) 100 mM of NaCl (c) Number of LPC as a function of salt concentration

General Engineering & Research slurry: 120nm (5% wt) in H_2O at pH = 6.5

Silica Slurries: pH Studies

20

General Engineering & Research 80 nm colloidal silica slurries

Summary

- Spheryx's Total Holographic Characterization[®] (THC) provides new insights into slurry agglomeration
- THC provides size, refractive index, composition and morphology
 - Temperature changes induce LPC
 - Dilution changes agglomeration behavior
 - Mechanical stress affects LPC
 - LPC increases above critical salt concentration
 - LPC changes with pH
- THC is a valuable tool for characterizing and detecting LPC during slurry formulation, application, storage and transportation

Acknowledgement

- Spheryx's team
- General Engineering & Research
 - Dr. Robin V. Ihnfeldt & Team
- NYU CSMR
 - Dr. Andrew Hollingsworth
 - Prof. David Grier research group
- NSF SBIR

GENERAL ENGINEERING AND RESEARCH

Sphe