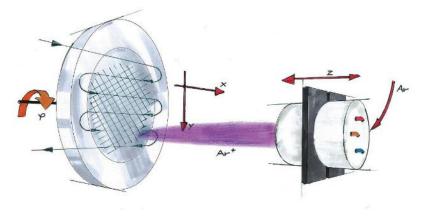


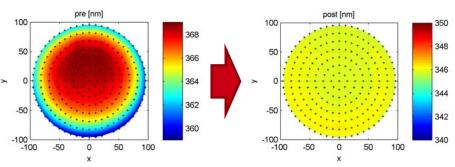
scia Trim 200 Ion Beam Trimming

Allan Biegaj

July 2017


Background

Principle of Ion Beam Trimming (IBT)



Principle of Ion Beam Trimming

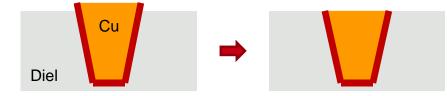
- Localized wafer polishing (trimming) by focusing of broad ion beam
- Non-contact, high vacuum process with precision to nearly single atomic layer
- Ion beam scanned across wafer surface, varying dwell time to remove exactly desired amounts at each location on wafer
- Dwell time map automatically calculated based on incoming wafer topology map

Principle of Ion Beam Trimming

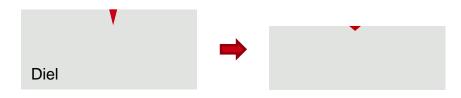
Thickness data before (left) and after (right) ion beam trimming

Ion Beam Trimming as Complement to Semiconductor CMP

Background and Potential Applications


- CMP has good removal rates and planarization efficiency
- IBT can remove material locally and selectively with nanometer precision.
 - => Complementary strengths
- Trimming useful for post-CMP reduction of imperfections
 - Can improve control of dimensions, topography, and surfaces

- CMP may create thickness variations
 - Radial dependence of removal (WIWNU)
 - Variation in mean amount of removal (WTWNU)
- IBT for use after high removal CMP applications
 - WIWNU often proportional to amount removed
 - Interlevel Dielectric CMP (memory), Cu CMP for semi-global and global interconnects, W via CMP
- IBT for use after lower removal CMP applications
 - These have tight final thickness control requirements
 - FinFET Poly CMP, Poly-Open-Polish CMP, Metal Gate CMP, Cu minimum pitch levels
- IBT for correction of final thickness through localized trimming
 - Demonstrated ability to precisely control removal mean and profile



- CMP has to handle increasingly complex film stacks
 - May not always achieve perfect selectivity, leading to step heights differences
 - More critical for low removal CMP applications
 - Need to create planarity with less and tighter film loss
- IBT Trimming technology can aid planarization
 - Metal to dielectric selectivity may be adjusted

- CMP may sometimes leave the surface less than ideal condition, with residues, scratches, or roughness.
- Trimming can change surface roughness
 - Effect depends on the energy used and the material being trimmed
 - IBT lowering roughness could enable more aggressive CMP
 - IBT increasing roughness could help subsequent layer adhesion
- Residues can be reduced
 - Surface oxidation from CMP and cleaning can be removed
- Removal without chemical effects can reduce scratches
 - Shallow micro-scratches can be altered

Applications

Process Examples and Typical Results

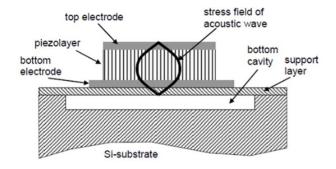
Applications in dimensional Trimming

Devices with Critical Dimensions:

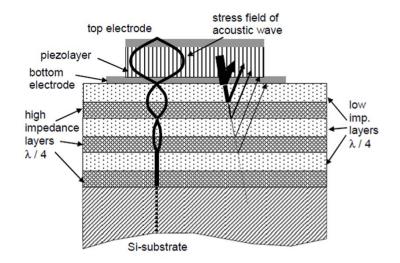
- Bulk Acoustic Wave (BAW) devices
- Surface Acoustic Wave (SAW) devices
- Bulk volume quartz resonators
- Thin Film Head (TFH) devices in magnetic storage
- Silicon on Insulator (SOI) wafer

Hard drive using TFH devices

Mobile phones using BAW and SAW devices

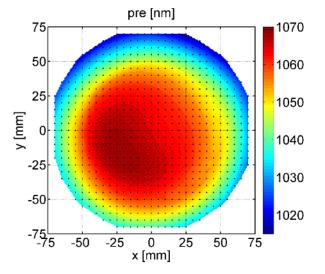

Bulk Acoustic Wave (BAW) Filters

 Usage of piezoelectric materials like Aluminium Nitride (AIN) for conversion of electromagnetic to acoustic domain

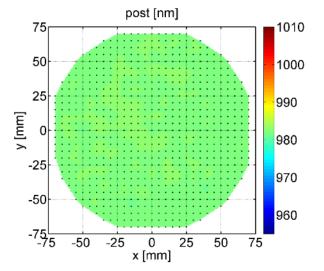

systems

scia

- Bulk Acoustic Wave (BAW) designed to run vertical wave in a λ/2 resonator
- Free Bulk Acoustic Resonators (FBAR) utilize a cavity for separation of the acoustic wave from the wafer
- Solidly Mounted Resonators (SMR) utilize an acoustic Bragg mirror of alternating λ/4 high and low acoustic impedance films.
- Especially SMR devices have extensive need for trimming

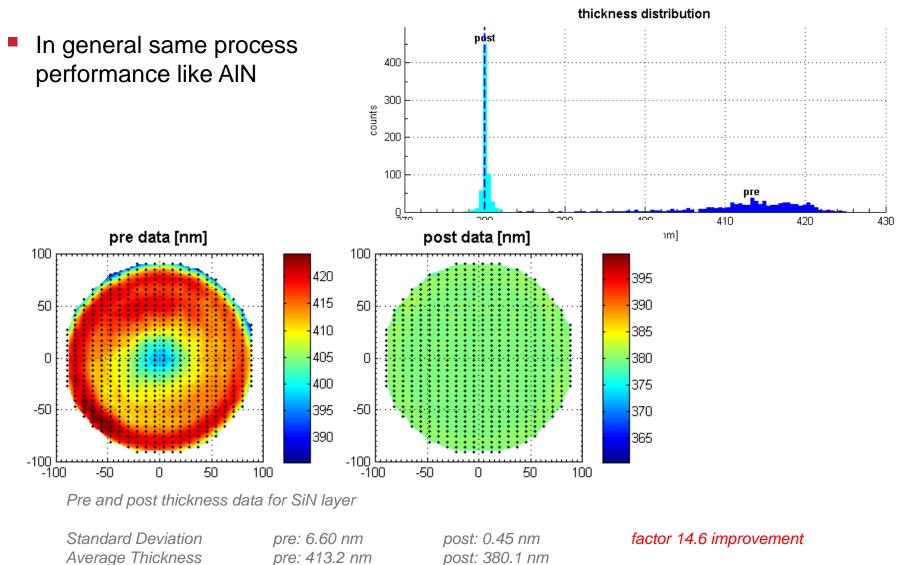


Solidly mounted BAW device (SMR)


scia systems Trimming of AIN-Resonator for BAW

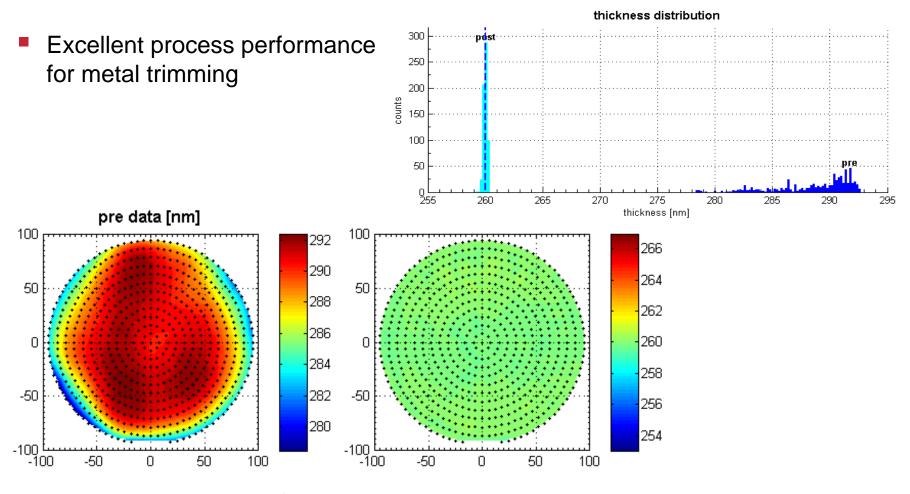
- AIN piezoelectric film for bulk acoustic wave (BAW) devices
- Final frequency adjustment happens in trimming of Si₃N₄ passivation

Pre and post thickness data for AIN layer


Standard Deviation Average Thickness pre: 13.3 nm pre: 1049.9 nm

post: 0.3 nm post: 982.3 nm

factor 41.6 improvement (target: 982.0 nm)

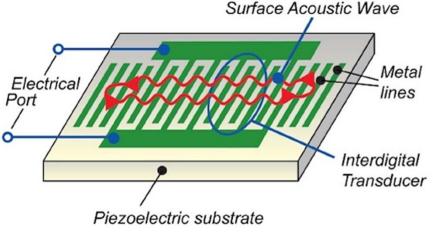

Trimming of Si_3N_4 Passivation for BAW

scia Trim 200

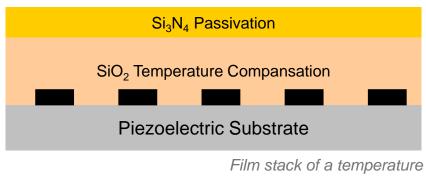
scia systems

Trimming of Mo Contact for BAW

Pre and post thickness data for Mo layer


Standard Deviation	pre: 3.26 nm	post: 0.15 nm	factor 21 improvement
Average Thickness	pre: 288.8 nm	post: 260.0nm	

scia systems


scia systems

Surface Acoustic Wave (SAW) Filters

- Surface Acoustic Wave (SAW) utilize surface wave
- Distance of inner digital transducer electrodes defines wavelength
- Negative effect of higher thermal coefficient improved by temperature compensation film of material with opposite thermal expansion coefficient resulting at -15 ... 25 ppm/K
- Temperature compensation and passivation used for frequency trimming

Principle of a SAW device

compensated SAW device

scia systems Trimming of SiO₂ TC in SAW

 Frequency trimming of SiO₂ temperature compensation

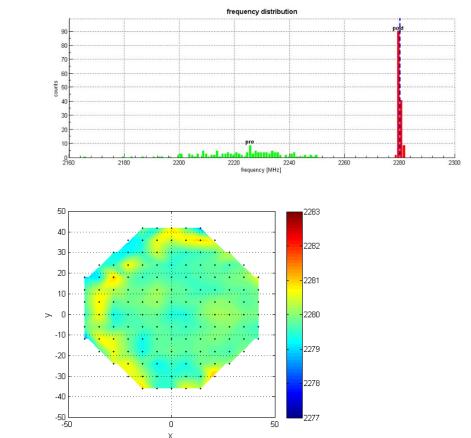
Aſ

30

20

10

-10


-20

-30

-50 L -50

 \geq

Direct import of frequency data using transfer function ∆f = f(d)

Pre and post frequency trimming of a SiO2 temperature compensation film of a 100 mm wafer

Standard Deviation Average Frequency pre: 15.3 MHz pre: 2.223 GHz

2240

2230

2220

2210

2200

2190

2180

2170

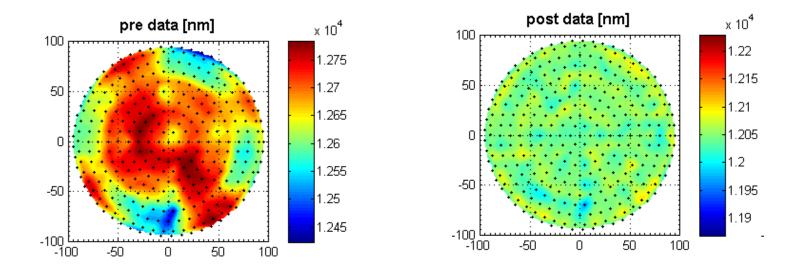
50

post: 0.5 MHz post: 2.280 GHz factor 30 improvement

scia systems

Silicon on Insulator (SOI) Wafers

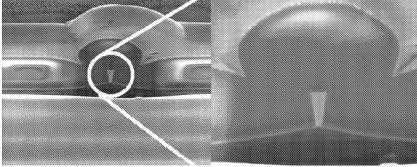
Bonded and ground SOI wafer


- SOI Wafer Fabrication:
 - Growth of thermal oxide on Silicon handle wafer
 - Bonding of second Silicon wafer on top
 - Grinding down and polishing of Silicon top wafer
 - Mechanical polishing may still leave thickness non-uniformity
- Ion Beam Trimming applied for further improvement

Thin or Ultra-Thin Top Silicon	
Buried Oxide	
BaseSilicon	

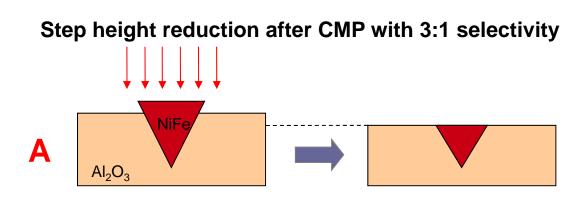
- Used for:
 - Pressure sensors
 - Microfluidic components
 - MOEMS
 - Flow sensors
 - Actuators
 - Accelerometers (3-axis)
 - Gyroscopes
 - Silicon microphones
 - Silicon oscillators

- Trimming of SOI wafer with ~0.6 µm average removal
- Wafer trimming at 45 deg. for improved rate
- Control of ion energy to avoid surface damage

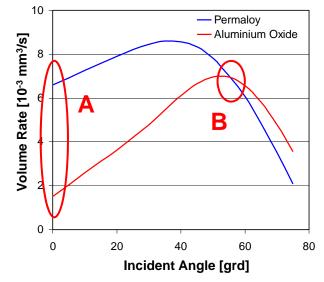

Pre and post trimming film homogeneity of a SOI film on a 200 mm wafer

Standard Deviation	pre: 73 nm	post: 20 nm
Average Thickness	pre: 12660 nm	post: 12050 nm

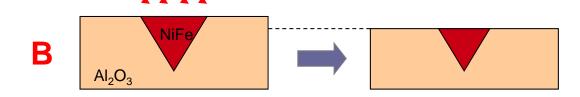
- TFH are used in hard drives for data storage
- Track width on hard disc depends on magnetic flux or width of magnetic pole
- Size of magnetic pole adjusted by CMP
- Final correction with Ion Beam Trimming



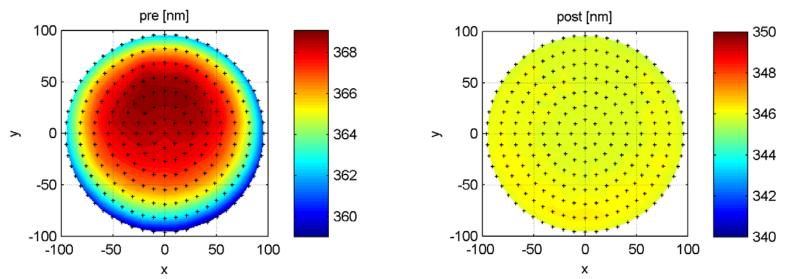
TEM photograph of a pole structure of a read/write head of a hard disk drive


scia systems

Localized Pole Trimming in TFH


- Ion incident in pole trimming used for
 - Selectivity between materials
 - Rate enhancement

Localized pole trimming with 1:1 selectivity



Capabilities for selectivity adjust between FeNi and Al₂O₃ by the ion incident angle

scia systems Trimming of Al₂O₃ in a TFH Application

- Typical average removal of between 10 ... 100 nm with process times of in between a few to 30 min
- Improvement of film homogeneity by a factor of typically 10 ... 30

Pre and post trimming film homogeneity of a AI_2O_3 film on a 200 mm wafer

Standard Deviation	pre: 3.0 nm	post: 0.13 nm	factor: 21 improvement
Average Thickness	pre: 365.3 nm	post: 345.0 nm	

Benefits

Summary of Key Features

- Film thickness homogeneity adjustable down to nearly atomic level of 0.1 nm.
- No limitations in film and wafer materials to be processed.
- All standard wafer sizes up to 300 mm possible.
- Cluster tools with two process chambers and two cassette load-locks available.
- Fully automatic and production proven solution with cassette loading, vacuum aligner and wafer ID reader.
- Throughput and maintenance optimized design.
- Outstanding performance in uniformity achieved and essential for handling yield limited process steps.
- Many potential applications following CMP processes.

Thank you for your attention!

scia Systems GmbH Annaberger Straße 240 09125 Chemnitz Germany Phone: +49 371 5347-780 Fax: +49 371 5347-781 info@scia-systems.com www.scia-systems.com