Integrated Photonics Institute

for Manufacturing Innovation

Integrated Photonics is about data and sensing

Data Comm / Telecom

1600 Gb/sec

You can pack more information onto a light than an electric cable, all while pipeline consuming much less power

- Connect the world
- More energy efficient

Continuously Tunable Optical Orbital Angular Momentum Generator

VISION Establish technology, business, and education framework for industry, government, and academia to accelerate transition of integrated photonic solutions from innovation to manufacturing-ready systems spanning commercial and defense applications.

Robotics

PIC Sensors

- Improved healthcare
- Threats mitigation

Augmented Reality

LIDAR

- Obstacle detection
- Lighter and faster
- Small / cost effective / reliable
- > Very low power

Manufacturing Technologies which enable novel, leading edge product/system solutions

iPhotonics Market Characteristics

'Hockey Stick'

Characteristic

- ✤ 5yrs slow growth
 - mature technology

overcome manufacturability issues

- 3yrs to product commercialization
- ✤ then exponential growth
 - rapid adaption

DataCom / Telecom

- Industry driven / Aggressive Drive
- Solutions on-the-way
- Continuous / fast migration to iPhotonics

- Solutions evolve
- Slow migration to iPhotonics

Sensors

- Bio / Healthcare, total lack of adaption to Si-Technology Solutions
- iPhotonics will be of disruptive nature (molecular diagnostics)
- Solutions (spectroscopy) to be driven in collaboration with Department-of-Health & Player that intends to jump into the market 'big'

Critical CMP Levels

- Photodetector
 - Integrating photo detectors in silicon reduces costs
 - Detector Performance driven by polish
 - DFM and process efficiency still needs to be addresses
- Waveguides, Couplers, Modulators
 - Silicon Waveguides & Nitride Waveguides
 - Novel new materials
 - Surface integrity key to performance driven by polish
 - Multiple levels integrated with detectors
- Metallization (BEOL / 3D)
 - Non typical Aluminum & other metals due to integration
 - Multiple device connections
 - Wafer to wafer bonding
 - Chip to interposer
- CMP supply chain for integrated photonics
 - Address not only current process challenges
 - but hockey stick volume ramp
 - Investment in future new materials

Si Photonics test die with top cladding removed to show structures, with close-ups of a (a) Mach-Zehnder modulator and (b) directional coupler.

95nm Si3N4 taper on Si waveguide.

Projects

	2016 PROJECT PORTFOLIO					
KTMA/MCE	PROJECT NAME					
Datacom	High Capacity High Radix Optical Switch					
Analog RF	Integrated Photonic Analog Link on Si					
PIC Sensors	Raman Chem/Bio					
EPDA	EPDA PDK					
EPDA	DFM Methods and Tools					
MPWA	Laser Integration into SUNY Platform with Heteroepitax					
MPWA	Chip Level Packaging, Year 1 Pilot Phase					
MPWA	PIC Integration on Interposer & Chip					
MPWA	300mm MPWA Program, Year 1 Pilot Phase					
ICT	Inline Controls & Testing, Year 1 Pilot Project					
	Functional Testing Development for Automated Scaled					
ТАР	Manufacturing					
ТАР	High Density Fiber-Chip IO Packaging					
ТАР	High-throughput Mfg. for PIC Polymer WG Connection					
PIC Sensors	Waveguide SPR					
ТАР	Rochester Hub					
Analog RF	Integrated Photonic Analog Link and Processing on InP					
EPDA	InP EPDA Tools					
MPWA	InP PIC Foundry					
PIC Array	Free Space Communications					

		Wh(t)	Wh 18	*1.0	Wh 20	Wh 21	Wh 22		Wh 2
	Super-St.	ALC: N	100	-	-	-	ALC: N		-
10001-00.00	844							٠	-1.0
	30.044							•	-24,
*****	2-14							٠	-6.7
	17-64							٠	-15.
*****	20.64							•	4.
	28.6 mg	New	Let Be					٠	6.5

6000um Waveguide

- Uniformity across that length
- Not just height but smoothness
- CMP Absolutely critical for this device
- How to solve this problem

REQUIRES Multiple Partners

- Design / Simulation: PDK
- Silicon / Fabrication: MPW
- Process solution via:
 - DFM Predictability
 - Committed Consumable Supply
 - Final Manufacturing solution

✓ QUALIFIED SUPPLY CHAIN!

Silicon Photonics Process Design Kits (PDK)

- PDK– 3 technologies, 2 major releases/year
 - Full (active)- v1.0 available now
 - Passive- v1.0 available now
 - Interposer- v1.0 available now
 - Next: v1.5 (Aug'17), v2.0 (Jan'18)
 - Incremental releases add components & maturity leading to guaranteed specs based on full statistical corner validation

Extensive Component Library

- Passive, Active and Interposer components
- Support for simulation, layout, schematics, DRC, documentation
- Developed by Analog Photonics LLC (Boston)
- EDA/PDA Design Software Supported

SYNOPSYS°

- Download the PDK from MOSIS
 - AIM Membership or license required

PDK Passive Components	Qty	Selected Performance
Waveguides (Si & SiN), curves, etc.	16+	Si:<2.2dB/cm, SiN:<1dB/cm
Edge Couplers (Si & SiN)	2	<2.5dB/facet loss
Vertical Couplers (Si & SiN)	2	<3dB loss
3dB 4-Port Couplers (Si & SiN)	2	loss <0.5dB, deviation <1%
Y- Junctions (Si & SiN)	2	loss <0.25dB, deviation <1%
Directional Coupler (Si & SiN)	2	loss <0.5dB, deviation <1% @ 1550nm
Si-to-SiN Coupler (escalator)	1	loss <0.1dB
Crossing (Si)	1	loss <0.25dB, crosstalk < -60dB
PDK Active Devices	Qty	Selected Performance
Digital Ge Photodetector	1	>30GHz, <20nA dark
Analog Ge Photodetector	1	>25GHz, <80nA dark
Digital Mach-Zehnder Modulator	1	>15GHz, >25Gb/s, push-pull <2Vpp per arm, >5dB extinction, <5dB loss
Analog Mach-Zehnder Modulator	1	>15GHz, -10V< Vs <0V, 25dB lin., 1500–1600 nm
Thermo-Optic Phase Shifter (Si)	1	0.25dB loss, <50mW, range 0π<Δθ<2π
Thermo-Optic Switch (Si)	1	<1dB loss, 25mW
Tunable Filter (Si)	4	<0.5dB loss, 26nm FSR, >1nm/mW tuning efficiency
Microdisk Switch (tunable)	4	<2ns switch time, >200GHz EO tuning @ 1.2V

0

- MPW Fab Runs Planned in 2017
 - SUNY Poly 300mm fab line
 - 3 MPW offerings
 - Full-Active- 2 planned in 2017
 - Passive Only- 2 planned in 2017
 - Interposer- 1 planned in 2017
 - Reservations to be a rider can be started at

http://www.aimphotonics.com/pdk-mpw-sign-up/

- Generates quote with terms
- 20% down to hold slot; balance invoiced at design submission

MOSIS is the MPW Aggregator

- DRC clean designs are submitted to MOSIS
- MOSIS also distributes the PDK

MPW Pricing

<u>FULL</u>

- 50mm² chips
 - \$100K AIM members
 - \$120K non-members
- 8mm² chips
 - \$25K AIM members
 - \$30K non-members

<u>PASSIVE</u>

- 50mm2 chips
- \$30K AIM members
- \$36K non-members
- **INTERPOSER**
- 156mm2
- \$93.6K AIM members
- \$112.3K non-members

Now is time to be involved in the solution

IBM 5nm chip uses a "gate-allaround" transistor (GAAFET) \$100**B**

Intel integrated 4x25Gbps technology, with hybrid silicon lasers

Dies attached to a 300mm photonic interposer wafer at SUNY Poly

500 Gb/sec Infinera InP transceiver

2014 2015 2018 2017 2018 2019 2020 2021 2022 2023 2024