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Bl The Changing Landscape of CMP:
Trends and Challenges for Advanced Devices

More CMP
= Advanced device structures leading to increase in the need for CMP

Wafer-scale control in FEOL for FINFET devices

= Narrow window of operation: tighter lot-to-lot and with-in lot variation
= Stringent thickness control requirements
= Edge profile control and consistency is critical

Reduced topography and defect tolerance
= Challenging selectivity requirements
= Low dishing, high PE is increasingly important
= [ncoming topography < typical CMP capability
= More CMP near the transistor — dishing and defects!
= Emphasis on reduction of micro-scratch count and depth

3D stack designs
= High removal rate for microns thick oxide films
= High planarization and low dishing across mm features
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Bl Changes in CMP Scope:
Advanced Devices Drive More CMP

2D NAND

Challenges in 2D NAND Extendibility
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Average 1-3 FEOL CMP Steps
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Average 9-11 FEOL CMP Steps
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10-13 Metal BEOL CMP Steps

Average 19 CMP Steps
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Conventional Packaging
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Adv. Packaging, 3D DRAM:
2-4 CMP Steps/Layer




Bl Shift in CMP Scope:
Layer Augmentation in Advanced Devices

Advanced logic Advanced FDSOI
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Architecture
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Macro-Scale Micro/Nano-Scale
CMP Tool - Reaction and
Operation Abrasion Events

i\ N :
Full Optimization of Top Pad Material,
Texture, Groove Design and Pad Stack

_—-

Pad Texture Formation,
Characteristics and Influence

Pad Stack Components,
Properties and Mechanics

A = Slurry Flow Dynamics at Wafer,
Thermal and Frictional Effects at Groove and Texture Scale
Wafer, Groove and Texture Scale
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Bl [mproving Uniformity via Texture & Disk Characterization

Advanced characterization enables precise quantification of:
« Pad texture morphology, uniformity and consistency through lifetime
« Conditioning disk diamond uniformity and wear characteristics
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mm CMP Material Removal Events and Defect Events

= Typical CMP process removes f_-.'3.';'-'-_-_'-_'i':j..'i';-_ N
2000 — 8000 A/min thickness R ——

across full surface of wafer

= Implies combination of

- 0O(10°) nano-abrasions
by slurry particles

— O(107) micro-abrasions
by full asperity tips

| ~50-100 umtall
pad asperities

[LP

= Typical CMP defect counts
are O(10) — O(100) defects

= Malfunctions of abrasion that
incur defect happen only once in
100,000 to 100,000,000 events

Approaches to defect reduction involve combinations of physical and chemical approaches to minimize the
probability of formation or impact of defect forming particles
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mm Defect Improvement by Polymer Engineering
Order of magnitude defect improvement possible by polymer design while enabling high PE / RR
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Material parameter

IK = IKONIC™ a trademark of the Dow Chemical Company



mm Challenges in Planarization:
Breaking Conventional Trade-offs in PE and Defectivity

Materials that minimize low area contact
while enabling low defectivity
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mm Challenges in Planarization:
Breaking Conventional Trade-offs in PE and Defectivity

Defectivity

/s

Low abrasive silica-based slurries and soft pad
synergy enabling improved PE, low defects
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mm Challenges in Planarization: Long Length PE

Thick oxide removal for multilayer 3D stacks High RR, high PE materials
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mm Challenges in Planarization: Long Length PE

Thick oxide removal for multilayer 3D stacks

3-4um thick

Selective, low dishing silica-based slurry

Die scale thickness variation
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Bl Change in CMP Complexity:
Top Challenges for Advanced Devices

Wafer-scale control in FEOL for FINFET devices

= Narrow window of operation: tighter lot-to-lot and
with-in lot variation ‘ ' Contlaci_t pressure;:
= Stringent thickness control requirements: reguiation on water

= Edge profile control and consistency is critical

Reduced topography and defect tolerance
= Challenging selectivity requirements

= Low dishing, high PE is increasingly important Materials that break
PE/defect trade-offs

= [ncoming topography < typical CMP capability
= More CMP near the transistor — dishing and defects!

: : . Low abrasive slurry
= Emphasis on reduction of micro-scratch count and

depth
_ Products that extend
3D stack designs planarization length
= High removal rate for microns thick oxide films High RR materials
= High planarization and low dishing across mm Selective, low
features dishing silica slurry
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