

Electronic Materials

State of CMP Materials

Marty W. DeGroot July 12, 2017

Dow.com

The Changing Landscape of CMP: Trends and Challenges for Advanced Devices

More CMP

Advanced device structures leading to increase in the need for CMP

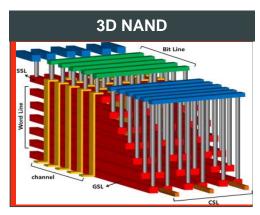
Wafer-scale control in FEOL for FinFET devices

- Narrow window of operation: tighter lot-to-lot and with-in lot variation
- Stringent thickness control requirements
- Edge profile control and consistency is critical

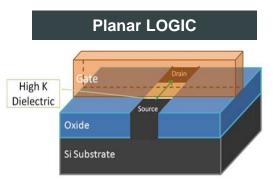
Reduced topography and defect tolerance

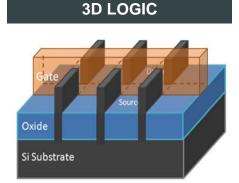
- Challenging selectivity requirements
- Low dishing, high PE is increasingly important
 - Incoming topography < typical CMP capability</p>
- More CMP near the transistor dishing and defects!
- Emphasis on reduction of micro-scratch count and <u>depth</u>

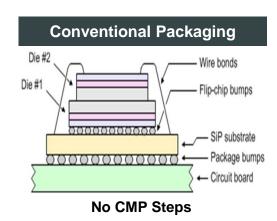
3D stack designs

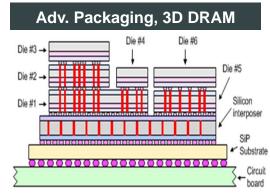

- High removal rate for microns thick oxide films
- High planarization and low dishing across mm features

Dow Electronic Materials


Changes in CMP Scope: Advanced Devices Drive More CMP


Average 9 CMP Steps


Average 19 CMP Steps

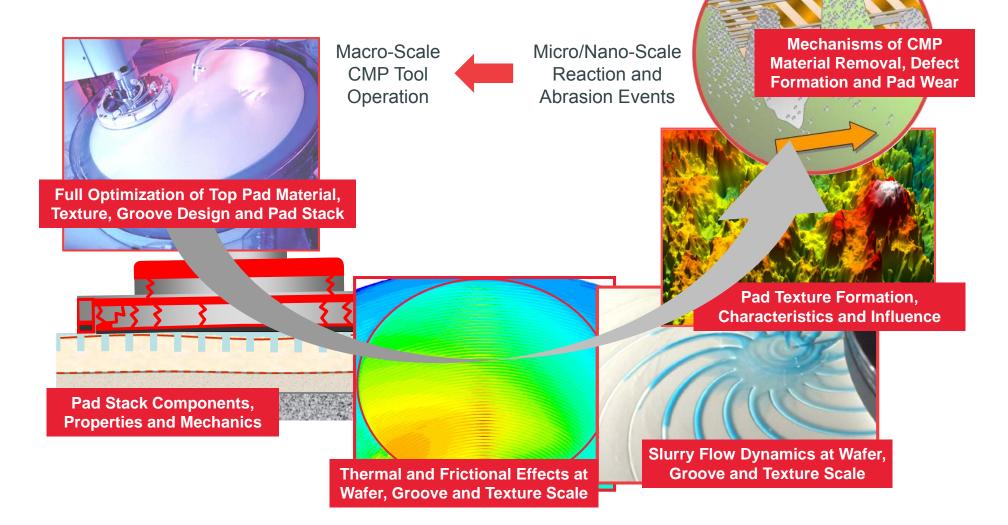


Average 1-3 FEOL CMP Steps 2-3 MOL CMP Steps 7-9 Metal BEOL CMP Steps

Average 9-11 FEOL CMP Steps 5-7 MOL CMP Steps 10-13 Metal BEOL CMP Steps

Adv. Packaging, 3D DRAM: 2-4 CMP Steps/Layer

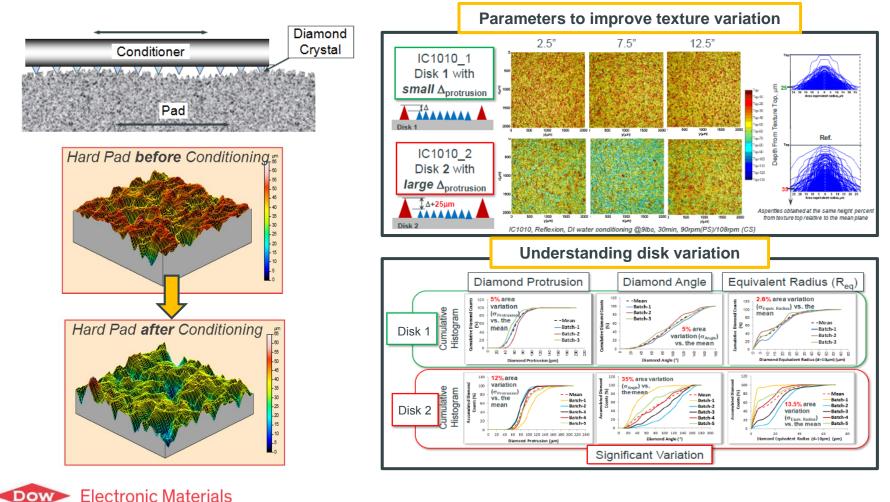
Shift in CMP Scope: Layer Augmentation in Advanced Devices


				Advance	ed loaic							Adv	anced FI	OSOI	
	19					10-11 Cu					12				10-12 Cu
	18							Co IM (3)							HM (2-4)
	17						10.10.0.(*)	HM (4-12)	4		11	-			
	16						10-13 Cu (*) Co IM (0-2)	W Plugs		ess	10				W Plugs
ess	15 14						HM (2-6)	W-TS Co-TS		0	9				W-TS
Process	14					8-12 Cu (*)	W Plugs	HM		Pro				10-12 Cu	SAC
	12					HM (2-4)	W-TS	SAC2			8			10-12 Cu	SAC
CMP	11					W-Plugs	SAC2	SAC1		ber of CMP	7			W Plugs	W Gate
5	10					W-TS	SAC1	Co Gate			6	9-10 Cu	9-10 Cu	W-TS	РОР
of	9					SAC	W Gate	HM			0				
er	8					W-Gate	HM	РОР			5	w	W	SAC	ILD0
Number	7				9-10 Cu (*)	НМ	POP	ILDO		dmuN	4	AI/W Gate	AI/W Gate	W Gate	Gate Poly
<u>n</u>	6			9-10 Cu	W-Plugs	РОР	ILD0	Gate Poly		lu l		,	,		
Z	5		7-8 Cu	W	W-TS	ILDO	Gate Poly	III-V		~	3	РОР	POP	POP	HM
	4	7-8 Cu	W	AI / W Gate	AI/W Gate	Gate Poly	SiGe	SiGe			2	ILD	ILD	ILD	STI2
	3	W	Al Gate		POP	HM	HM	HM				CTI	CTI	CTI	CT11
	2	ILD	ILD	ILD	ILD	STI2	STI2	STI2			1	STI	STI	STI	STI1
	1	STI	STI	STI	STI	STI1	STI1	STI1		# CMP	Laver	15	15	19	25
# CMP	Layer	10	12	14	15	18-25	24-30	25- 34			ecture	FDSOI	Planar	FDSOI	FinFET
Testa i			1m 45nm 28nm		20nm	16/14/10nm	7nm	5nm							
Technology Node		Planar		нкмд		FinFETs		GAA		Technology Node		28nm 14		Inm	

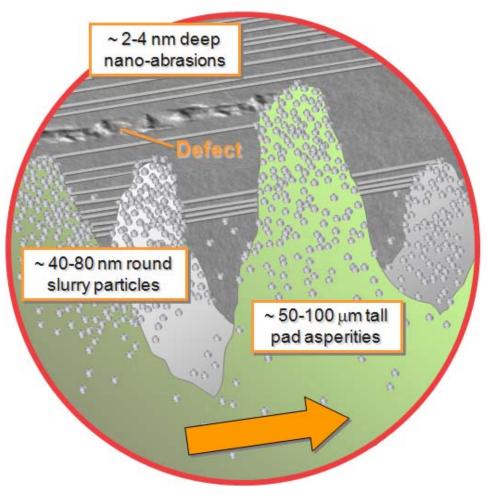
(*) Co/TaN barrier in IM

			Ν	lemory			
	16						Cu (X)
	15						W via (X)
	14						w
v.	13			ILD		Cu (X)	W (X)
sec	12		ILD	Cu (X)		W via (X)	W (X)
Process	11		Cu	W via (X)		w	HM (X)
	10		W via (X)	TiN		W (X)	ILD4
CMP	9	Cu	TiN	ILD4	1	ILD3	ILD3
of (8	W via (X)	ILD4	ILD3	Cu	SoP (X)	SoP (X)
	7	w	ILD3	W (X)	W (X)	Poly (X)	Poly (X)
Number	6	ILD3	W (X)	ILD2	ILD	SoN (X)	SoN (X)
n	5	Ox Buff (X)	ILD2	HM Buff (X)	w	HM Buff (X)	HM Buff (X)
z	4	ILD2	Poly	Poly	ILD	ILD2	ILD2
	3	Poly	ILD1	ILD1	Poly	ILD1	ILD1
	2	ILD1	Ox Buff	Ox Buff	Ox Buff (X)	Ox Buff (X)	Ox Buff (X)
	1	STI	STI	STI	STI	STI	STI
# CMP Layer		10	14	17	10	14-26	17-32
Node Technology		3Xnm	2Xnm DRAM	1Xnm	2X - 1Xnm Planar	3D 32-36L NAND	3D 48-64L

CMP Physics Across All Length Scales



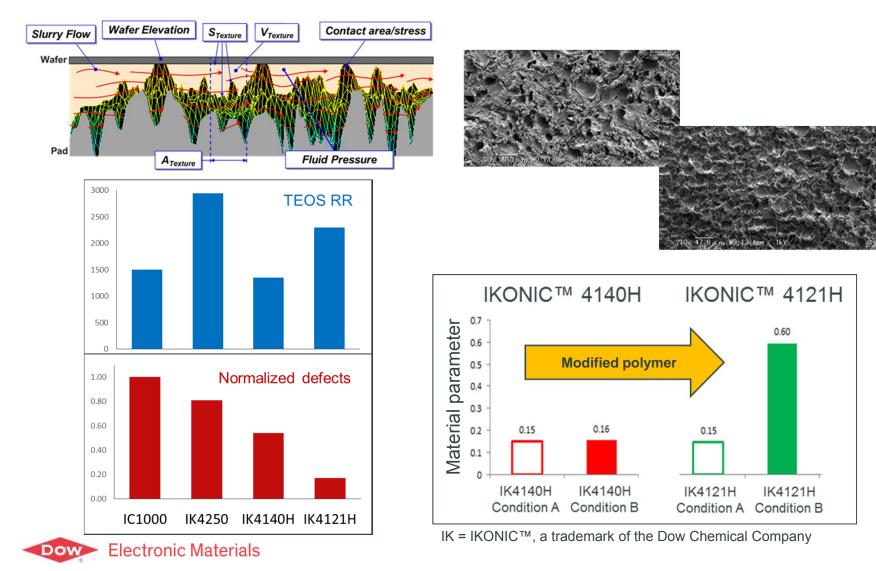
Improving Uniformity via Texture & Disk Characterization


Advanced characterization enables precise quantification of:

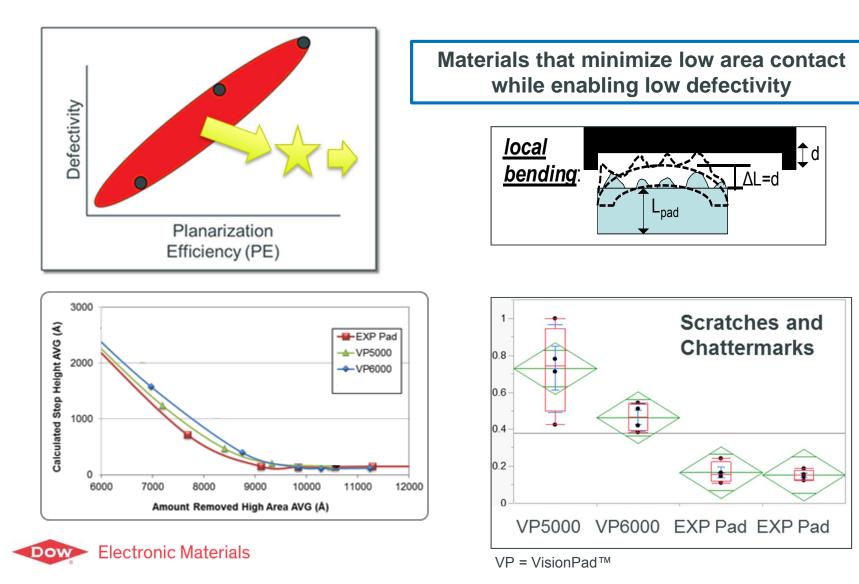
- Pad texture morphology, uniformity and consistency through lifetime
- Conditioning disk diamond uniformity and wear characteristics

CMP Material Removal Events and Defect Events

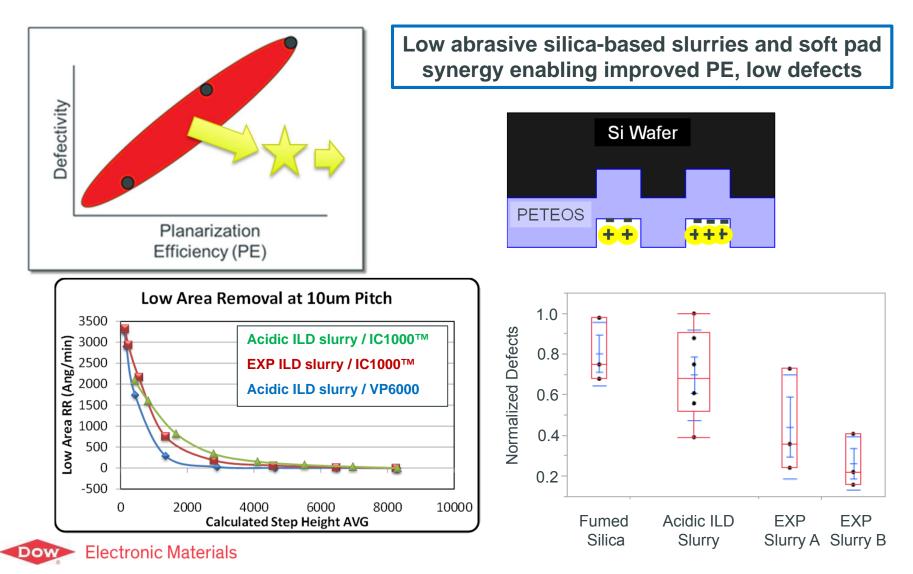
- Typical CMP process removes 2000 – 8000 Å/min thickness across full surface of wafer
- Implies combination of
 - O(10⁹) nano-abrasions by slurry particles
 - O(10⁷) micro-abrasions by full asperity tips
- Typical CMP defect counts are O(10) – O(100) defects
- Malfunctions of abrasion that incur defect happen only once in 100,000 to 100,000,000 events

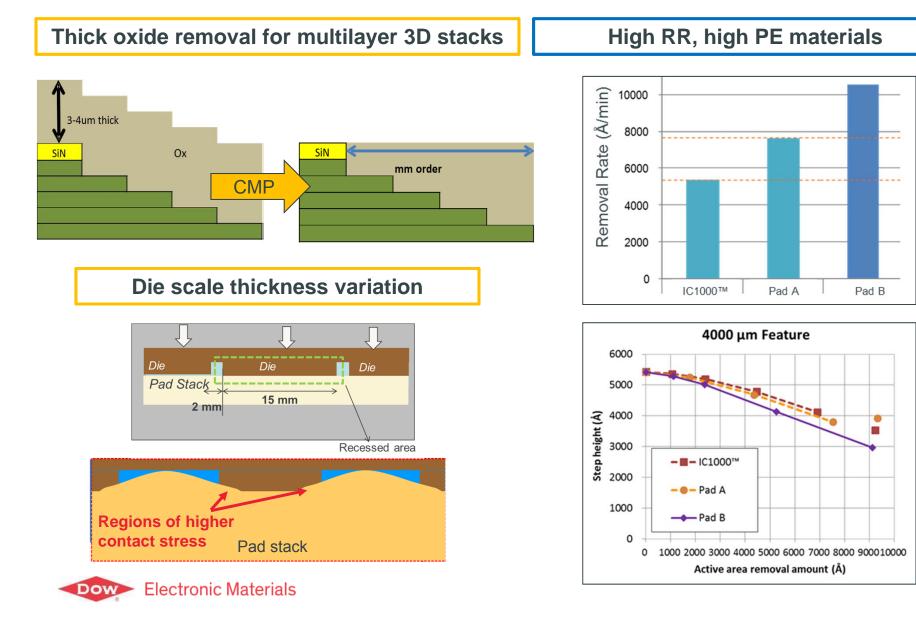


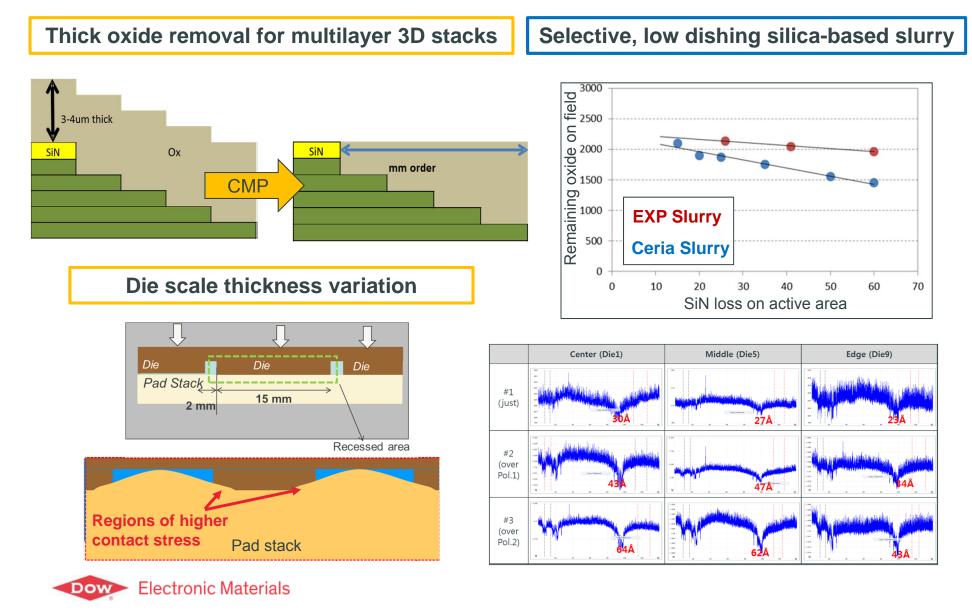
Approaches to defect reduction involve combinations of physical and chemical approaches to minimize the probability of formation or impact of defect forming particles


Dow Electronic Materials

Defect Improvement by Polymer Engineering


Order of magnitude defect improvement possible by polymer design while enabling high PE / RR


Challenges in Planarization: Breaking Conventional Trade-offs in PE and Defectivity


Challenges in Planarization: Breaking Conventional Trade-offs in PE and Defectivity

Challenges in Planarization: Long Length PE

Challenges in Planarization: Long Length PE

Change in CMP Complexity: **Top Challenges for Advanced Devices**

Wafer-scale control in FEOL for FinFET devices

- Narrow window of operation: tighter lot-to-lot and with-in lot variation
- Stringent thickness control requirements:
- Edge profile control and consistency is critical

Reduced topography and defect tolerance

- Challenging selectivity requirements
- Low dishing, high PE is increasingly important
 - Incoming topography < typical CMP capability</p>
- More CMP near the transistor dishing and defects!
- Emphasis on reduction of micro-scratch count and depth

3D stack designs

- High removal rate for microns thick oxide films
- High planarization and low dishing across mm features

 Materials that break **PE/defect trade-offs**

Products that extend planarization length

- **High RR materials**
- Selective. low dishing silica slurry

Dow Electronic Materials

Thank You

Copyright © The Dow Chemical Company. All Rights Reserved. ®™ Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow