

Research Activities on Defect Improvement of CMP Process in 1x nm Foundry Device

1JI CHUL YANG, 2Hong Jin Kim, 2Venu. Govindarajulu,1Dinesh Koli and 2Jason Mazzotti

Jichul.yang@globalfoundries.com

1 CMP, Advanced Technology Development (ATD), 2 CMP, Advanced Module Enginnering (AME)

Confronting Reality in semiconductor field.

Scaling Challenges

- Device Structure
- Flow Complexity
- New Material Introduction

Complex Interdependencies

<u>Critical Insights</u> <u>Needed to Manage</u> <u>Dynamics</u>

CMP is becoming *COMPLEX*!

- CMP steps doubled from 28nm to 10nm node in order to enable new integration schemes such as replacement metal gate or self-aligned contact.
- Higher increased in 10nm CMP steps at MOL due to the complexity of contact module from gate and contact engineering.

CMP process challenges

FEOL: Si, SiN, Ox, low k FEOL: Si, SiN, Ox, a-Si MOL: W, SiN, Ox, poly, FEOL: SiN, Ox MOL: W, SiN, Ox, poly Si, New materials Selectivity MOL: SIN, Ox, W, TIN, AI New Materials BEOL: Cu, Ta, TaN. **Materials** BEOL: Cu, Ta, TaN, TiN BEOL: Cu, Ta, TaN, TiN Lower Resistivity material. **Dishing**/ Higher PD < 100 (A.U) Higher PD <83 (A.U) Higher PD < 66 (A.U) Erosion Uniformity 3sigma < 46 (A.U) 3sigma < 100 (A.U) 3sigma < 66 (A.U) (100x100um)**10nm** 14nm **20nm**

 More new materials are expected in the future nodes in order to meet stringent process requirement in CMP

Increasing challenge in 3 D's

Within-die uniformity

Within-wafer uniformity

ICPT 2015 keynote Speaking material, Mark Doherty, GF

Increasing challenge – defect translation

Increased # layers = increased defect translation

Unforgettable and endless problem in CMP

Micro and Nano Scratches

Improvement activities for Micro Scratches

Nanoparticle-Ceria: CMP Performance

Case I: Poly CMP

Macro to Macro Variation

Case II: Inter-layer Dielectric (ILD)

Nano-ceria based slurry showed microscratch reduction in multiple process steps with different integration scheme, however most processes are limited to buffing CMP only so far \rightarrow *Planarity and selectivity control is the key challenges (i.e., proper slurry chemistry)* with nano-scale abrasive application for CMP slurry (removal rate is tunable with easy and comparable to conventional ceria based slurry)

Soft Pad Effect on Microscratch

Microscratch Trend

Removal Rate: ~10% drop

Post CMP Pad Thickness: Planarity

Microscratch reduction can be achieved by soft pad implement, however, planarity and removal rate degraded either (this is reported many times in different conferences, publications, and business reports). For the soft pad application, *proper pad conditioning* is necessary to maintain polishing performances.

Process Scheme for Microscratch Reduction

CMP: Scratch generating process and <u>scratch removal process</u> as well!

Non-selective buffing CMP help to scratch reduction $\rightarrow \underline{selectivity and}$ <u>uniformity control</u> is challenge for this application JI Chul Yang, 60th KCMPUGM, Suwon, South Korea, 2015

Conditioner Design Change to improve scratches

Advantages of CVD Tip Formation

Guaranteed Quality

- No Design Limitation : tip to tip distance, Tip height distribution, etc.
- Can control pad surface roughness and polishing Debris

Working with SHINHAN Diamond & 3M

Strategies for Scratch Mitigation

- Soft Pad w/ Proper
 Conditioning
- Ultrafine Abrasive Particle
- Recipe Optimize (Low Down Force, Slurry Flow)
- Cleaner Brush Treatment
- CMP Friendly Process

Scratch SOLELY can be minimized?

In-Wafer Uniformity (iAPC)

Challenges of CMP Process

Incoming height variation: variation in multiple upstream processes add up

Removal rate drop as pad life (removal rate stability)

CMP loading effect on removal rate

- Polishing rate is not constant
- Sinusoidal removal behavior observed
- Early stage of polishing (< 10s) is not predictable

iAPC: Integrated Advanced Process Control

http://blog.nus.edu.sg/me4105precisionengineering2 012/types-of-metrology-equipments/

iAPC Algorithm and Process Sequence

Gate Height Control with iAPC

Incoming process variability \rightarrow CMP needs to accommodate and compensate it and tight gate height control \rightarrow in-situ (or real time) process control improve wafer to wafer variation

Contact W CMP with iAPC

>50% Reduction in raw level delta to target (contact height)

[Invited Talk] Ji Chul Yang, 60th anniversary Korean CMP User Group Meeting, "Defect Reduction of CMP process in Logic Device" Suwon, Korea, Nov.5.2015.

Cu CMP with IAPC

Example of Rs control by iAPC

- WTW Rs control demonstrated and in use
- Need further WID/WIW/WTW enhancement
- Endpoint improvements (On-platen / In-situ?)

Ji Chul Yang, at el. ICPT2015, 2015. Sep. 30 – Oct. 2, Arizona, USA

In-situ Cu height control with Barrier EPD and Dielectric removal amount control

1. Cu CMP - > Cu clear + O.P.

2. Dielectric removal amount control with in-situ optical sensor

Cleaner Defect

Cu CMP Defect – lots of cleaner defect type

Ring Scratches

Organic Residue

Brush Particle

Cu Flake

Recipe Test

- Recipe is major driven solution for CMP defect

Brush Surface Modification

Working with Rippey

Changing profile by different Process condition

[Invited Talk] Ji Chul Yang, 60th anniversary Korean CMP User Group Meeting, "Defect Reduction of CMP process in Logic Device" Suwon, Korea, Nov.5.2015.

Tool Configuration for effective cleaning

Particle Size

In Conclusion,

Fundamental Studies

Defect-Preventive
 Process Design

 Advanced Diagnostics (FDC, SPC sensor)

Defect Management

Structures & Materials

"Selectable" Selectivity

Manufacturing-Friendly Equipment Design

The Next "Silver Bullet"