Mechanistic Aspects of Wafer Cleaning After Chemical Mechanical Planarization

<u>Michael White</u>^{*1}, Daniela White¹, Atanu Das¹, Don Frye¹, Shining Jeng², Ruben Lieten³, Jun Liu¹, Roger Luo², Thomas Parson¹, Elizabeth Thomas¹, Volley Wang², John Clement¹ and Michael Owens¹

¹ Entegris, Inc. 7 Commerce Dr., Danbury, CT 06810, USA;
² Entegris, Inc. 1F, No. 669, Section 4, Chung-Hsin Rd., Chutung Town, 31061, Taiwan
³ Entegris, Gmbh, Hugo-Junkers-Ring 5, Gebaud 107/W, 01109 Dresden, Germany

ENTEGRIS PROPRIETARY AND CONFIDENTIAL

Performance Goals for Post CMP Cleaners

- I. Best in class defectivity
 - Very low particle defects (silica, ceria, alumina, ...)
 - Greater challenges arising as particle sizes decrease
 - Low organic residue (Cu-BTA or other thick film formers, W or other metal inhibitors, pad debris, plating additives, ...)
- 2. Very low or no interfacial or surface metal/barrier corrosion or recess
 - Advanced nodes <10 nm</p>
 - Low galvanic corrosion
- 3. Uniform, smooth etching with low roughness
 - Affects thresholds for defectivity measurements
 - No attack on low k dielectric/dielectric loss
- 4. Low metallic Impurities on wafer (<10¹⁰ atoms/cm²) on dielectrics
- 5. Good buffering/minimal brush interactions to avoid ring scratches

Rational Design of a Post CMP Cleaner

Entegris

Defectivity Correlated to Charge Repulsion Between Silica Particles and Various Surfaces (W, SiO₂, Si₃N₄)

1. White, M. L. et al, Mater. Res. Soc. Symp. Proc. 991, 0991-C07-02 (2007)

2. Hedge, S. and Babu, H. V. 2Eelectrochem. Soc. St. Lett. V7, pp. 316-318 (2008)

3. White , M. L. et al. Mat. Sc. For. 1249 E04-07 (2010).

Break-up and Disperion of Cu(I)-BTA Complexes

UV-Vis Used to Predict Optimium Complexant and Ligand Concentration

Sedimentation of Metal Oxides Used to Determine Effective Dispersant and Concentration

Additives Enable Hydrophilic Surface with Low Forces of Adhesion for Maximum Cleanability

- Best cleaning

-

_

- Lowest defects

Entegris

SEM Defect Review Shows AG-3300 and AG-3690 Have Excellent Silica Removal and No Detectable Organic Residue

defects pareto (>= 100 nm defects)

No Organic Residue- silica counts very low

Co/Cu Galvanic Corrosion Mechanisms

■anodic reaction on Co: $Co \rightarrow Co^{2+} + 2e^{-}$ ■cathodic reaction on Cu: $0.5O_2 + H_2O + 2e^{-} \rightarrow 2OH^{-}$

Co OCP > Cu OCP: Co cathodically protected

■anodic reaction on Cu: $Cu \rightarrow Cu^{2+} + 2e^{-}$ ■cathodic reaction on Co: $0.5O_2 + H_2O + 2e^{-} \rightarrow 2OH^{-}$ Enterris

Electrochemistry Reveals PlanarClean[®] AG Exhibits Improved Corrosion Performance

Older Technology AG-3300 AG-3690 0.001 0.001 0.0001 0.0001 0.0001 0.00001 abs(I) [A] 0.00001 abs(I) [A] 0.00001 0.000001 0.000001 0.000001 0.0000001 0.0000001 0.00000001 0.0000001 0.00000001 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 EM EM EM \wedge V = 0.005 \land V = 0.079 $\triangle V = -0.37$ **Nearly Zero Co Protected Anodic Co Corrosion Galvanic Corrosion** (0.063 Å/min) **Controlled Electrochemical properties** Ligands to control OCP gap \checkmark Cobalt Copper Passivation to modify resistivity Entearis CONFIDENTIAL | 11

Nyquist Plots Show that AG-3300 Has Significantly Higher Film Impedance on Both Cu and Co than Older Technology

Higher impedance storage and loss components \rightarrow higher film integrity

SEM Analysis Shows Significantly Improved Cu/Co Corrosion Performance for PlanarClean[®] AG

All AG dilutions: 100:1, **20** minute room temperature static etch

TEM Images on 45 nm IMEC Cu/Co Wafers Show that **PlanarClean® AG Series Has Excellent Corrosion**

Mechanisms for Improving Organic Residue Removal from Si₃N₄

Market drivers for formulated W cleaners

- Minimize W recess inherent ion commodity cleaners
- Improved cleaning performance

+ Other surfactants, dispersing agents and solvents also being studied

- Aggregates with the organic residue
- **Removes it from Si₃N₄ surface**

Contact Angle and FTIR Show that Organic Residue on Si_3N_4 is Removed

AG W-100 and W-210 Show Improved Cleaning **Performance Over Dilute Ammonia**

Experiment done in collaboration with IMEC, Leuven, Belgium

Conclusions

- Charge repulsion shown to be a key driver towards cleaning performance
- Dispersion and complexation important for removal and preventing redeposition of organic residues and particles
- OCP gap must be minimized by optimal ligand selection to minimize galvanic corrosion
- Optimal corrosion inhibitors can studied by Impedance spectroscopy and Tafel plots

