

GENERAL ENGINEERING AND RESEARCH

National Science Foundation – SBIR Phase II

Nano-Capsule CMP Slurries: Enabling Localized Control of Chemical Exposure

Robin V. Ihnfeldt, Ph.D. July 11, 2016

Outline

Introduction

- GE&R Background
- Motivation and Objective of Research
- □Synthesis and Characterization
 - Silica particles
 - Nano-capsules
- CMP Experiments
 - MRR and Planarization Efficiency
- Other Efforts
- □Summary
- Acknowledgements

GE&R Background

- Founded in 2009
 - Industry Experience Semiconductor/ Pharmaceuticals/ Medical Device/ Oil refining
 - PhD on CMP slurries
 - Licensed Patent Agent
 - GE&R Advisor Board
 - Ted Taylor Micron R&D Fab Manager / Director at Cymer
 - Steve Oldenburg President of NanoComposix
 - Professor Jan Talbot Head of UCSD ChemE dept.
- Current employees
 - 5 full time employees , 2 part time, 3 UCSD graduate students, 2 Prof.

- Lab opened in 2012 with Phase I SBIR NSF Grant - \$150,000 1yr
 - Development of nano-Capsules
 - CMP slurries
 - Phase II Awarded 2014 \$750,000 – 2yr
- R&D Grant NRL \$2.4M for 6
 - yrs Cooling Technology Collaboration with UCSD
- DOE STTR Awarded June 2012 Magnetocaloric nanomaterials

Future Research Areas

Bio applications - Nano-Capsules

Motivation

- Current CMP slurries are homogeneous mixtures of nanoparticles and chemicals
 - Chemicals cause unwanted etching, dishing, oxidation
 - Additional corrosion inhibitors, surfactants lower MRR
 - As devices scale down becomes more difficult to achieve planarity
- Need to control exposure of the chemical components
 - reduce/eliminate etching, increase planarization efficiency

Research Objectives

Develop and optimize methods to synthesize nano-capsule slurries

- Chemical payload encapsulated in the nanoparticle pores
- Polymer coating that is stable over time – does not allow leakage of payload
- A polymer soft enough to be torn away with shearing force to release the payload
- Particles that are easily dispersed
 no agglomeration
- Meet the cost requirements for competitive CMP slurry pricing

Immediate Copper Dissolution

For Cu CMP – silica loaded with glycine

- Zero etch rate,
- High MRR
- High PE

General Engineering & Research

rihnfeldt@geandr.com

Porous Silica Synthesis

- Modified Stober method
- GE&R Silica is available from 20nm-1000nm
- Cv < 20% (SEM)</p>
- Powder or dispersion

Nano-capsule Synthesis

GE&R Synthetic Methods Proprietary

- Loading and coating is simultaneous in solution
- Economical Processing
- Various base particles (silica, alumina, etc.) possible
- Various payloads possible
- Considerations for nano-capsule synthesis
 - Solution pH, nanoparticle IEP, ionic strength, chemical payload interaction with polymer materials

How much chemical is loaded?

- BET intra porosity 40nm silica ~ 15-20%
- Glycine + Methylene Blue ~3-15% loading
- Cytidine and Uridine ~3-5%
- Polymer coating not complete encapsulation?
- Pore Size effects

8

UV-Vis data of a) MB, b) CYT, and c) URI in solution alone and encapsulated into 40nm silica nano-capsules

Experimental Copper CMP

Strasbaugh 6EC CMP Machine

Addition of hydrogen peroxide (H₂O₂) (oxidizing agent)

Material Removal Rates (MRR) – wafers weighed before and after CMP

Planarization Efficiency (PE) – measured using a Dektak 150 surface profiler

- Test wafers were purchased from SKW Associates, Inc., using MIT854 mask

Cu CMP Data

- Cu CMP of 6in blanket copper wafers on Strasbaugh 6EC CMP machine Silica loaded with various concentrations of glycine. (silica at 4wt% and at pH 4.5 with 0.1wt% H2O2+1mM KNO3).

Slurry	MRR (nm/min)
40nm SiO2	44
– not coated	
40nm SiO2	43
– polymer coated	
+ 5wt% Glycine	
40nm SiO2	65
– polymer coated	
+ 10wt% Glycine	
40nm SiO2	94
– polymer coated	
+ 15wt% Glycine	
40nm SiO2	134
– polymer coated	
+ 22wt% Glycine	

Polishing conditions: IC1000 polishing pad, 60rpm platen speed/60rpm head speed, 150ml/min slurry delivery, 3PSI downforce.

Glycine concentration limited by solubility in H2O

Cu CMP Data

- CMP of 6in blanket copper wafers on Strasbaugh 6EC CMP machine

Nano-CRC slurry – 40nm Silica nanoparticles loaded with **glycine** and polymer coated

40nm SiO2 slurry – 40nm Silica nanoparticles (no chemistry or coating)

□ Nano-CRC - very sensitive to H2O2 concentration!

□ Optimal H2O2 concentration ~0.1wt%

Cu CMP Data – Patterned Wafers

Profile of 50um line space/50um line width feature used to determine PE.

□ Highest PE and MRR - 40nm Nano-CRC Slurry

Porosity/Loading changes with PS?

Cu CMP Data – Patterned Wafers

Other Efforts

Chemical Payloads

- Silica Glycine, Tartaric Acid, acetic acid, potassium persulfate, – all successfully loaded.
- □ Increasing/controlling the porosity of silica nanoparticles
 - Payload concentration limited by solubility and porosity
 - 80nm SiO2 particles highest MRR but no increase in MRR in nano-CRC form - low porosity?
- Base particles Colloidal Properties (IEP) limit particle effectivity
 - □ Commercially available SiO2, CeO₂, Al₂O₃
 - Low cost Composite Nanoparticles ?

Other nano-capsules – Bring us your ideas!

MRR for Ti CMP with nano-CRC

Slurry	MRR (nm/min)
40nm SiO2	44
– not coated	
40nm SiO2	118
 polymer coated 	
+ 4wt% $K_2S_2O_8$	

Measured IEP for various nanomaterials synthesized using GE&R proprietary methods.

Material	Measured
	IEP
SiO ₂	2
Si-Al-O	4-5
Al-O	8-9
Material	Measured
	IEP
SiZrO ₄	3-4
Si _{0.5} Zr _{1.5} O ₄	4-5
ZrO ₂	5-6

Material	Measured IEP
SiO ₂	2
SiTiO ₄	2-3
Si _{0.5} Ti _{1.5} O ₄	3-4
Si _{0.2} Ti _{1.8} O ₄	3-4
TiO ₂	~4

Tunable IEP Nanocomposites - Spherical Morphology – low defectivity ¹⁴

Summary

- □ High quality monodispersed silica nanoparticles commercially available
- □ Processing techniques to form high quality nano-capsule slurries developed
- Advantages of nano-Capsule slurries
 - □ High planarization efficiencies
 - Enables controlled exposure of chemicals to surface
 - □ Environmental low concentrations of toxic/hazardous payloads possible

Acknowledgments

 Funded by the National Science Foundation through a Small Business Innovative Research (SBIR) grant.

Contact Information

Robin Ihnfeldt, Ph.D. (858) 736-5069 <u>rihnfeldt@geandr.com</u>

http://geandr.com/