

Electronic Materials

Advanced CMP Pad Surface Texture Characterization and Its Impact on Polishing

Zhan (Jen) Liu and Todd Buley

CMPUG Spring 2016 Apr. 7, 2016

Dow.com

Introduction

- CMP Pad Characterization Capabilities within Dow
- Pad Surface Texture Characterization Methodology
- Learnings
 - Impact of Conditioning Diamond Properties Diamond Protrusion
 - Impact of Diamond Wear
 - Impact of Disk Flatness
 - Impact of Polishing Tool Conditioning System
- Conclusion

CMP Pad Characterization Capabilities within Dow

 Variety of characterization capabilities have been developed within Dow for CMP fundamentals, applications and process diagnostics

Pad Conditioning and Surface Texture

- CMP pad surface texture can significantly impact wafer polishing
- A proper way to quantify pad surface texture is essential to provide an insight into pad conditioning and polishing performance

Methodology of Pad Surface Texture Characterization

- High resolution fast speed optical characterization is used to scan representative regions on the pad to obtain 3D surface topography
 - Missing data is minimized to ensure high data quality
- Custom analysis is used to obtain texture characteristics impacting polishing performance including texture histogram, key parameters (e.g. A(z) and B(z)), their distributions and asperity properties

Learning 1

Impact of Conditioning Diamond Properties – Diamond Protrusion

Disk	Disk type	Diamond Type	Diamond Protrusion Difference between bimodal diamonds	Pad Material	Tool/Process
1	0.0000	himodal	$\Delta_{ m protrusion}$		same
2	Same	DITIOUAL	$\Delta_{\text{protrusion}}$ + 25 μ m	1010001	(DI water conditioning only)

- Both disks have same design and types of diamonds but diamond protrusion difference between bimodal diamonds differs by 25µm
- Reduced diamond protrusion difference leads to shallower pad surface texture, better texture uniformity and lower pad cut rate

VS.

Pad Surface Texture (2x2mm²)

 Compared to pad 2, pad 1/disk 1 exhibited shallower and more uniform texture across pad radii, finer asperities in greater counts, and less pad wear due to less diamond protrusion difference

- Compared to pad 2, pad 1 exhibited smaller texture height above mean (*h_{am}*) on average and less variation across pad radii
 - Indicative of difference in asperities above the mean plane

Dow

©2016 The Dow Chemical Company and Cannot be Used Without Express Permission from Dow Electronic Materials

- Texture parameter A is a descriptor of texture scale volume (as a function of texture depth) available for slurry transportation
 - *A_{max}* indicates the maximum capacity
- Pad 1 exhibited smaller A_{max} on average and less variation than pad 2
 - Indicative of slurry transportation difference at texture scale

©2016 The Dow Chemical Company and Cannot be Used Without Express Permission from Dow Electronic Materials

- B is a descriptor of projected surface area (a function of texture depth in 'S' shape) available for slurry and pad-wafer contact at texture scale
- Pad 1 exhibited different B(z) profile, smaller B_{max} on average, and less variation than pad 2 indicating higher tendency to hydroplane at texture scale given other properties same

Learning 2

Impact of Diamond Wear

Disk	Disk Type/ Diamond Type	Diamond Wear	Pad Material	Polisher/Process	
1	22722	More, Blunt		como (STI polich)	
2	Saille	Minor, Sharp	101000	Same (STT polish)	

- Difference in diamond wear for a given process is clearly linked to resulting pad surface texture and pad wear/cut rate
- Diamond disk with more wear leads to shallower texture and lower pad cut rate

Conditioner Characterization Methodology

Z. Liu, J. McCormick, T. Buley, Conditioner characterization and implementation for impacts of diamonds on CMP pad texture and performance, IEEE proc. 2015 ICPT, pp 285, 2015

- Interferometer is used to scan representative regions on the disk to obtain data of >100 diamonds
- Custom analysis is used to obtain individual diamond characteristics including protrusion, angle (360°-averaged) and equivalent radius (R_{eq})

Characterization of Diamond Wear

- Histogram shift is used to quantify diamond wear
- Relative to disk 1, disk 2 exhibited less diamond wear in diamond angle (0.5×) and equivalent radius (0.5×) primarily due to diamond properties

©2016 The Dow Chemical Company and Cannot be Used Without Express Permission from Dow Electronic Materials

Pad Surface Texture (2x2mm²)

 Relative to pad 1, pad 2 exhibited deeper texture on average and greater pad cut rate with less remaining groove for given process, impacted by diamond wear

 Compared to pad 1, pad 2 exhibited greater texture height above the mean (*h_{am}*) on average and less variation across pad radii

 Compared to pad 1, pad 2 exhibited greater texture parameter A_{max} on average and less variation across pad radii impacted by diamond wear

 Compared to pad 1, pad 2 exhibited different profile of B(z), larger texture B_{max} on average primarily due to greater texture depth, and less variation

Learning 3

Impact of Disk Flatness

Disk	Disk Type	Disk Age	Pad Material	Polisher/Pr ocess	Polish Note
1			IC1000 TM	same (STI polish)	Good
2	same	same			Poor, Unstable RR

 Disk base flatness property can significantly impact pad conditioning and resulting surface texture leading to problematic polishing performance

Pad Surface Texture (2x2mm²)

 Relative to pad 1, pad 2 exhibited much shallower texture from pad center to edge and significantly lower pad cut rate with little groove wear for given process

 Compared to pad 1, pad 2 exhibited smaller texture height above mean (*h_{am}*) from pad center to edge indicating pad conditioning issue

Dow

Disk Flatness and Diamond Wear

- Relative to disk 1, disk 2 exhibited significantly worse base flatness
 - Indicative of root cause of conditioning issue
 - Diamond wear analysis was aligned with disk flatness
 - Relative to disk 1, disk 2 exhibited taller, sharper and slimmer diamonds indicating less diamond wear due to worse flatness

Learning 4

Impact of Polishing Tool – Conditioning System

	Pad	Pad Life	Disk Type	Polishing Tool	Process	Polish Note
1			00000	Х	same	Good
2	1010001	comparable	same	Y	(STI polish)	Bad, Unstable RR

- Conditioning system (including both hardware and software) difference between polishers can impact pad conditioning and diamond wear consequently polishing performance
- It is important to link specific polishing application to its favorable pad surface texture for process improvement and troubleshooting

Pad Surface Texture (2x2mm²)

- Difference in pad surface texture across radii can lead to polishing performance difference given other properties same
- Seemingly 'good' texture ≠ Favorable texture in the specific application

 Compared to pad 1, pad 2 exhibited greater texture h_{am} on average and less variation, but unfavorable in the specific application

Texture Parameter A and B

 A_{max}

2.5 7.5 10 12.5 5 max Ω 0 2.5 7.5 10 12.5 15 5 **Radius from Pad Center. inch**

	Similar	trend	was	noted	in	texture	A _{max}	and	B _{max}
--	---------	-------	-----	-------	----	---------	------------------	-----	------------------

 Such trend was confirmed by characterization of series of pads processed in tool X vs. Y mainly due to different conditioning system

Normalized	Pad 1	Pad 2
Avg. A _{max}	0.85	< 1
STDEV of A _{max}	1.6	> 1
Avg. B _{max}	0.94	< 1
STDEV of B _{max}	4.2	> 1

Case II: Impact of Polisher on Pad Surface Texture

center of wafer track

 consistent with lower pad cut rate and more remaining groove depth note

Pad Cut Rate (mils/hr)	0.128	> 0.067
ion from Dow Elect	ronic Mate	erials

Groove Depth, mil

21.9

27.3

- Compared to pad 1, pad 2 exhibited shallower texture with smaller texture *h_{am}*, *A_{max}* and *B_{max}* on average although less variation, not favored by the specific application
 - Indicative of conditioning issue

Normalized	Pad 1	Pad 2
Avg. <i>h_{am}</i>	1.4	> 1
STDEV of h _{am}	1.2	1
Avg. A _{max}	1.36	> 1
STDEV of A _{max}	1.5	1
Avg. B _{max}	1.14	> 1
STDEV of B _{max}	0.3	1

DOV

- Relative to disk 2, disk 1 exhibited significantly more diamond wear in disk center and outside indicating more active diamonds in conditioning
- Polishing tool difference was the root cause of pad conditioning and polish performance issue

Conclusion

- A characterization method to precisely and statistically quantify CMP pad surface texture is developed
 - A combination of texture characteristic parameters provide an insight into pad conditioning and polishing performance
- Pad surface texture and polishing performance is impacted by disk properties including diamond properties, diamond wear and disk flatness, and polishing tool for given process
- Advanced characterization capabilities are necessary for in-depth understanding of CMP, to provide differentiated CMP consumables and scientific solutions

Thank You

Acknowledgement: Mr. Scott Koons and Mr. Rodney Bunty Dr. Weijie Lin, Dr. John McCormick Dr. Ravi Palaparthi and Dr. Greg Muldowney

®TM Trademark of the Dow Chemical Company ("Dow") or an affiliated company of Dow