Hardware and Process Solutions to Evolving CMP Needs

- or -

CMP Challenges ... How Can We Polish THAT?

Robert L. Rhoades (Entrepix) and Paul M. Feeney (Axus Technology)

Presented at TechXPOT North - Semicon West San Francisco, CA July 16, 2015

Introduction

CMP Explosion and Maturity

Traditional Scaling versus More than Moore

Industry Infrastructure Waterfall

IC Makers and Support Community

Specialist Examples Outside of Traditional Scaling

• Axus, Entrepix, and Audience

Summary

CMP Intro

No CMP – Traditional Device

Same Device with 4 Basic CMP Steps

Explosion of CMP

1995 Qty ≤ 2	2005 Qty ~6	2015 Qty≥40				
CMOS	CMOS	CMOS	New Apps	Substrate/Epi		
Oxide	Oxide	Oxide	MEMS	GaAs & AlGaAs		
Tungsten	Tungsten	Tungsten	Nanodevices	poly-AIN & GaN		
	Cu (Ta barrier)	Cu (Ta barrier)	Direct Wafer Bond	InP & InGaP		
	Shallow Trench	Shallow Trench	Noble Metals	CdTe & HgCdTe		
Polysilicon		Polysilicon	Through Si Vias	Ge & SiGe		
	Low k		3D Packaging	SiC Diamond & DLC Si and SOI		
			Ultra Thin Wafers			
			NiFe & NiFeCo			
		Gate Insulators	Al & Stainless	Lithium Niobate		
entrepix		High k Dielectrics	Detector Arrays	Quartz & Glass		
		Ir & Pt Electrodes	Ir & Pt Electrodes Polymers			
		Novel barrier metals	Magnetics	Sapphire		
			Integrated Optics			

Moore's Law & More

Corollary to Moore: Add 4 CMP Steps/Generation

©2008 Cabot Microelectronics Corporation

6

Traditional Scaling

- Many more unique process steps to support, but with consolidation of large IC makers, not more CMP engineers
- Leaning more on equipment and consumable suppliers for new but proven processes, so suppliers focus on big customers

More than Moore

- Smaller IC makers and startups extending Semiconductor processes to make Adv Pkg, LED's, MEM's/Sensors, etc.
- Leveraging Support Community: IC Foundries, Researchers, and Planarization Specialists

Traditional Scaling

- More suppliers finding the shared cost of Specialist labs to be an attractive option for proving new products
- Many Researchers and Smaller IC Makers lack necessary skills and equipment for new or updated processes

More than Moore and Beyond – Focus of Talk

- Many Researchers and Fabless and Smaller IC Makers lack necessary skills and equipment
- Planarization being adopted non-Semiconductor applications

Axus

Equipment, Applications, and Materials

Entrepix

Equipment, Applications, and Materials

Audience

Equipment, Applications, and Materials

Axus Provides Full Service

Process Group

- Process Development and Consulting
- Processing of parts from feasibility through high volume manufacturing
- Evaluation of complete modules
- Equipment Group
 - New Equipment Design & Mfg.
 - Re-manufacturing of Grinding, Polishing, and Cleaning Equipment & Components
 - Upgrading equipment, designing new features
- Maintenance Group
 - Service & Spare Parts
 - Preventive Maintenance

Engineered Equipment and Process Solutions for Capability and Cost

Equipment and Process Examples

- Titan Multi-Zone Carrier Upgrades
- 159mm Substrate Upgrades
- Transparent Substrate Projects
- Shaped Substrate Modifications
- Templates for Small or Unusual Parts
- Advanced Wafer Thinning
- Pad Conditioning Systems
- 300mm Upgrades
- Integrated Edge Trim Grind

Titan Carrier, 3 Zone Control

Diverse Applications & Materials

Industries Served:

- Semiconductor
- MEMS, NEMS, MOEMS •
- Advanced packaging •
- Alternative materials
- Precision Optics/Ceramics •
- LED substrates and devices
- **CMP Supplier Community**

Axus Technology Development Lab

Semiconductor Materials

•

•

- Si
- Poly •
- Oxide
- Nitride •
- W
- Ti
- TiN

CHNOLOGY

- Cu Та
- TaN ٠
- Co ٠
- Ru •
- Low K •
- Ultra LK •

More Materials

- LiN ٠
- Au ٠
- Sapphire ٠
- Ge •
- BCB
- InP ٠
- GaAs •
- Epoxy •

Glass

AI203

- Ferrite •
 - Nb
- AI •
- AIN •

•

•

٠

Ni •

- SiC
- Ceramic
- Resist

www.axustech.com

- - Pt

•

٠

Ir

Cu paste

GaN

- **AITiC** •
 - PZT

More than Moore Examples

Passives Ni micro-pads in epoxy

Metrology Failure Analysis and Chip edge

MEMS ILD or Cu with large pads

NOLOGY

MEMS Ra CMP/bond/thin/CMP cavities

More than Moore Examples

Lighting / Power GaN Surface Quality

Lighting Sapphire Surface Quality

HNOLOGY

Power III-V Thinning and/or Surface Quality

Optics Arrays Post Polish

More than Moore Examples

TSV/TGV Front side and Back side

MEMS/MRAM Stop on Metal

MEMS/MRAM Resize 200mm to 150mm

HNOLOGY

Optics Windows Thin/CMP/bond/thin/CMP

New Process Applications:

Polymer CMP for Interposer Fabrication Pt CMP for high-temperature via connections Multiple materials (oxide, polymer, and 2 metals) Other

Hardware Solutions:

Clear Wafer Sensor Kits Water Saving Kits

The semiconductor industry is developing advanced packaging technologies to help improve system performance. For some companies, this represents an alternative path to continued shrinks of 2D device architecture.

Design goals for many of these efforts include one or more of the following:

- → Improve signal routing flexibility
- → Reduce parasitic losses
- → Shrink final form factor of the system (particularly for mobile platforms)

The goal of this particular project is to develop multi-layer interposers that include large Cu lines in stacked redistribution layers with large connecting vias. The project was led by Prof. Charles Ellis of Auburn University.

Diagram of Desired RDL

Courtesy of Auburn University

First level conductor and vias completed. Ready to repeat for next level.

Images before/after CMP

Cross section pre-CMP

Top down view pre-CMP

Top down view at breakthrough

Top down view fully cleared

Pt for high-temperature vias

Process targets:

- Pt (RR > 2000 Ang/min)
- Ti (RR > 2000 Ang/min)
- SiO₂ (High selectivity)
- Good surface quality

Slurry C met required performance and was used for further work

Slurry	Pt Rate (A/min)	Ti Rate (A/min)	Tox Rate (A/min)	Selectivity (Pt:Ti)	Selectivity (Ti:Oxide)
А	12	8	<1	1.5	> 8
В	104	1461	195	0.1	7.5
С	2980	3955	132	0.8	30.0
D	436	2108	777	0.2	2.7

Pt Vias

Electroplated Pt for

via fill

Pre-CMP

Prototype proven to

survive high

temperature anneal

up to 700°C

Post-CMP

Multiple Materials

Challenging integration

• Goals of CMP process:

• Final surface is comprised of oxide,

- High rate on oxide and polymer

- Planar surface across all materials

polymer, and two different metals

- Low Ra on all materials

Material Removal Rates by Formulation

Data		Removal Rate			Roughness (Ra)				
Run Order	Slurry	Oxide Rate	Polymer Rate	Metal #1 Rate	Metal #2 Rate	Oxide Ra (Ang)	Polymer Ra (Ang)	Metal #1 Ra (Ang)	Metal #2 Ra (Ang)
1	Baseline	7129	25233	2834	4521	6	12	n/a	5
2	Sample A	7121	21688	2118	2846	6	6	13	14
3	Sample B	10918	30655	4431	1942	14	6	37	7
4	Sample C	8940	33784	521	1071	16	19	672	7
5	Sample D	7595	25859	6060	6163	5	14	48	11
6	Sample D+	8307	17726	2248	n/a	5	6	26	n/a
7	Sample E+	14004	18977	3225	2411	5	9	13	11

Metal Foil CMP

- Thin sheets of molybdenum or stainless steel, machined surface as received
- Polish to mirror finish (achieved <80 Ang Ra and no residual machining grooves)

Polymer "button" CMP

- Coupons of polymers for potential use in wear surfaces
- Polished in slurry to assess abrasion tolerance and changes in surface with exposure to slurry

Polycrystalline Diamond

- Thin film polycrystalline diamond deposited on various substrates
- Needed to avoid diamond abrasives
- Developed process with silica slurry to achieve sub-nm final Ra

- Double-sided scrubbing with PVA brushes is the most commonly used approach for post-CMP cleaning
- Thousands of installed systems worldwide
- All systems include wafer sensors for feedback and control → Standard sensors fail to see clear wafers

Solution: Clear Wafer Sensor Kits

Multiple Sensors: Load station Brush box #1 Brush box #2 Transfer carriage Spin station Unload station

Net Result: Enables clear wafer processing on OnTrak double sided wafer cleaning tools

Similar mods now available on polishers also

In idle mode, CMP polishers and cleaners consume substantial amounts of DI water

Software allows only minimal control over wet idle parameters

Auxiliary timer and valves enable control in idle mode and system is automatically off line when tool is running process

Now installed in multiple facilities around the world and zero reports of process shifts or excursions in over 6 years

Proven 20-50% reduction in monthly DI water usage on both polishers and cleaners with zero process impact!!

Audience Examples

Equipment

Applications

Materials

7/22/2015

Summary

Use of CMP has Exploded

Both for Traditional Scaling and now in other areas

Many Examples of Expansion into New Areas

Entrepix, Axus, and Audience

Thank You for Your Attention