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CMP Pad Conditioning Fundamentals 

• CMP Pad conditioning is the process of “dressing” the polishing pad with an abrasive 
medium, typically a diamond abrasive disc 

• Conditioning determines the asperity structure of the pad 

• Conditioning acts to maintain pad surface stability through the removal of worn 
surface material and restoration of the intrinsic structure 
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Surface Height Probability 
Distributions 

• Pad texture measured via Vertical Scanning Interferometry 

• The pad surface height probability distribution describes how the pad surface is distributed in vertical space 

• The pdf doesn’t contain any information about the lateral distribution of asperities 

• Things to keep in mind 

• The “zero level” is  arbitrarily defined as the geometric mean of the data set (50% above, 50% below) 

• Area under the pad height pdf = 1 
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2. Adapted from: A.S. Lawing, Topics in Plasma Science and Thin Film Applications III - in Honor of Herbert H. Sawin 
AIChE Conference, Philadelphia, November 17, 2008 



The Three Components of Pad Texture 

• The most negative part of the distribution is due to pad native porosity and can be modeled as an exponential  

• The mid to band of the pad is influenced by the surface treatment 
• Surface treatments include conditioning and skiving processes 

• The extreme near surface in this example shows a polish process effect 
• Polish process effects include pad asperity wear (glazing) and debris accumulation 

• Polish process effects are not always observed 
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3. Adapted from: A.S. Lawing, and Chris Juras, ICPT 2007, Dresden, Germany 



Pad Porosity 

• Pad manufacturers have expanded their offerings in terms of available pore structures 

• Materials with different pore structures require conditioning tuned to their specific native porosity 

• Incompatible conditioning results in a disruption or masking of the native porosity of the material 
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Pad Conditioning 

• In the absence of “built in” porosity, the conditioner alone determines pad surface texture 

• Conditioner design variables determine the nature of the individual furrows which build up to form the pad 
texture 

• This example shows two different conditioner designs which impart a dramatically different surface 
roughness to a solid pad 
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Pad Porosity + Pad Conditioning 

Natural porosity of pad + 

Cutting behavior of conditioner = 

Final pad surface statistics 

Pad Surface Profile Pad Surface Height  

Distribution 

• Final pad surface is the product of the inherent pad texture (porosity) and the 
conditioner cutting characteristic (near surface roughness) 

• Each pad-conditioner combination will have a unique (intrinsic) surface structure 

• Cut rate, cutting characteristics and the resulting near surface roughness can be 
driven over a large range through conditioner design 
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5. K. Arun Reddy, A. Scott Lawing, G. Scott Koons, Yi Guo, Z. Liu, ICPT 2010, Phoenix, AZ, Nov 16, 2010 
 



Pad Glazing 

6. L. Borucki,  “Mathematical Modeling of Polish Rate Decay in Chemical-Mechanical Polishing” 
Journal of Engineering Mathematics 43: 105-114, 2002 

Wear of the pad surface by the slurry & wafer 
erodes tall asperities into shorter ones, 
creating a moving secondary peak in the 
surface roughness pdf near the separation 
distance. 
 
The wear model proposed by Borucki predicts 
the general features seen in the experimental 
data of Lawing and others: 

• Secondary peak moves to the left and 
increases in height with time. 
• The tail to the right of the secondary 
peak becomes steeper with time. 



Pad Wear vs. Asperity Wear (Glazing) 

The asperity wear rate is a function of 
pad properties as well as process and 
consumable conditions 
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Slurry/Particle Type  Effects - Ex Situ Rate Decay and Glazing 

• Typical “logarithmic” decay of rate after conditioning is suspended 

• Increase in asperity wear with time corresponds to decrease in polish rate 

• Colloidal slurries induce less significant asperity wear and result in less significant rate decay 

• Conditioning sets initial rate but has little influence after conditioning is suspended 
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Asperity Population and Planarization Performance 

7. Vasiliev, et al., Microelectronic Engineering 104 (2013) P. 51 

• Conditioner cutting characteristics directly 
affect the pad asperity distribution 

• The pad asperity distribution has a direct 
impact on the interaction of the pad with 
patterned features 

1. A.S. Lawing NCCAVS CMPUG, May 2004. 
        Available online at: http://www.avsusergroups.org/cmpug_pdfs/CMPUG_05_2004_Lawing.pdf 
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Conditioning and Dishing 
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8. A.S. Lawing NCCAVS CMPUG, June 2005. 
        Available online at: http://www.avsusergroups.org/cmpug_pdfs/CMPUG_2005_06_Lawing.pdf 

• Milder conditioning/smoother surface results in less dishing 
• More truncated asperity structure penetrates less deeply into low lying areas 

• In the same way, smoother surfaces are more efficient at removing topography 
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Conditioning, Debris Generation and Defectivity 

9. Yang, et al., Journal of Electronic Materials, Vol 42, No 1 2013 p. 98 

Fig. 3. The relative number of scratches according to the conditioning. 

3. Sung, et al., Applied Surface Science, 2058 (2012) p. 8300 

• The debris generated by conditioning is a significant 
contributor to defectivity 

• This may be the single most important driver for refining 
the behavior of conditioners at the level of individual 
cutting points 



Early Conditioning Designs 

10. S. Qamar NCCAVS CMPUG, June 2005. 
        Available online at: http://www.avsusergroups.org/cmpug_pdfs/CMPUG_2005_06_Ati.pdf 

TBW Grid-Abrade 
Photo courtesy of Mara Industrial Supply 

• Early conditioner designs adapted existing 
grinding and polishing implement technology 
for CMP 

• Pioneering companies such as ATI developed 
more advanced platforms, often at the urging 
of end users who were driving the technology 

http://www.avsusergroups.org/cmpug_pdfs/CMPUG_2005_06_Ati.pdf


Pad Conditioner Architecture 
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Brazed Matrix 

Protrusion 
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Features of advanced pad conditioner designs: 
 Fixed diamond grid placement to optimize configurations 

for specific cut-rate/cut-roughness process requirements 

 Tight uniformity of diamond height (levelling) and 
protrusion 

 Advanced QC, including incoming magnetic sorting, size 
sorting and shape sorting and strength testing 

 Factory pre-conditioning break-in and cut-rate testing 
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Kinik Flatness Evolution 
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Kinik Diamond IQC and Sorting 

Incoming QC Diamond Setting Vacuum Brazing Mid-Inspection Pre-Conditioning Final OQC 
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Kinik Final Inspection- Disk Imaging 

Camera 

Light 

Disk 

XY stage 

Incoming QC Diamond Setting Vacuum Brazing Mid-Inspection Pre-Conditioning Final OQC 

• Disk image capture unit currently 
utilizes 16 million pixels 

• The disk image system is 
automatically linked to a proprietary 
feature analysis software 

• Taiwan patent has been granted for 
this technology 

• Patented imaging system 
captures entire disc surface 
for comparison before and 
after polishing 



Consequences of “Statistical Control” of Diamond Contact 

• A handful of aggressive diamonds dominate the behavior 

• A relatively wide height distribution results in initial cutting 
points wearing quickly and additional points coming in 
contact as disc wears 

• Cut rate drift/degradation 

• Diamond orientation is extremely difficult (random) 

11. Wu, et al., ECS Journal of Solid State Science and Technology, 2 (1) P36-P41 (2013) 



Traditional Design Issues 

HEIGHT CONTROL  New disks designs require fixed 
and control diamond protrusion. Standard disks 
have >20,000 diamonds to ensure consistent pad 
contact (consistency through averaging).  Only a 
small fraction of true working diamonds 

Diamonds can rotate and change orientation during 
manufacturing impacting levelling.  New disk 
designs require controlled DIAMOND ORIENTATION  
(point, flat or line side-up diamond placement 
control)  

Low scratch defects require STRONGER DIAMONDS 
that will not fracture as well as robust fixing 
technology that will hold diamonds and not 
represent an additional contribution to defectivity 

Diamond Levelling  
DIAMOND SHAPE controls pad cutting, surface 
asperity development and pad/disk interface 
interaction.  Critical to design and control shape  

Diamond Orientation/Shape  

Diamond Strength 



CVD Diamond/Fine Diamond Conditioners 

12. D. Slutz NCCAVS CMPUG, July 2008. 
        Available online at: http://www.avsusergroups.org/cmpug_pdfs/CMP2008_7_Slutz.pdf 

13. R.K. Singh et al. NCCAVS CMPUG, May 2013. 
        Available online at: 
         http://www.avsusergroups.org/cmpug_pdfs/CMP2013_5RSingh-Entegris.pdf 
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Micro-Replicated Conditioners 

14. Tseng, et al., ECS Journal of Solid State Science and Technology, 4 (11) P5001-P5007 (2015) 

• Discrete control over cutting behavior 

• Potential defectivity improvements 

• Relatively low cut rates 

• Low surface roughness 



Pads Designed for Their Conditionability 

15. Poster associated with press release: “Dow Unveils First CMP Polishing Pads from its New 
IKONIC™ Pad Platform” 
Available online at: http://www.dowelectronicmaterials.com/pdfs/ikonic-info-1.pdf 
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PyradiaTM Diamond Technology 

PyradiaTM disks utilize a combination of high diamond strength, diamond 
shape technology and individually oriented and fixed diamond 
placements to provide step-out performance, consistency and COO: 
• Fixed diamond protrusion/levelling and designed shaped diamonds for 

specific pad contact for cut-rate, roughness and pad texture stability 
• High diamond strength for low defectivity 
• HVM product-product consistency for process stability 
• Wide configuration flexibility and enabling for CMP process 

optimization 
Fixed Diamond Placement 

High Strength Diamonds 

Ultra Precision Diamond Shaping 
Technology (UPDST) 



Conventional 

• All (~200) of the working diamonds on the Pyradia disc 
exhibit a protrusion height range of less than 10 µm 

• The tallest 200 diamonds on the conventional disc 
exhibit a protrusion height range of 20 µm, and the full 
protrusion height range of the working diamonds is 
likely much higher than that 

Diamond Height Control 

pyr∆diaTM  pyr∆dia® 



Cut Rate Stability 

• The Pyradia disc exhibits superior 

cut rate stability due to the much  

improved cutting tip height control 

compared to the conventional disc 

• Therefore, the asperity wear-cut 

rate balance is maintained for 

longer times 

• So, conditioner designs with lower 

cut rate can be utilized because 

you don’t have to “cheat” the 

process margin as much at 

beginning of life 

• Or, disc life can be increased 

significantly 



Hybrid CVD/Pyradia 

• The Pyradia platform can 

incorporate CVD pads 

• These precisely shape and 

protrusion controlled CVD pads 

modulate the cutting behavior, 

enabling the achievement of lower 

cut rates and smoother pad 

surfaces Hybrid 
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Summary 

• Pad conditioning is critical to CMP performance both in terms of absolute metrics (polish 
rate, planarization, defectivity) and the stability of those metrics over time 

• The surface texture of the pad can be analyzed, quantified, decoupled and tied to polish performance 

• Pad conditioner cutting behavior drives the pad near surface 

• Pad properties and conditioner design combine and interact to determine the overall structure of the pad 
surface 

• These factors can be taken into account to drive and support next generation conditioner and process 
design 

• As the process understanding of conditioning has evolved, so has the sophistication of 
conditioner hardware 

• From the initial adoption of available technologies, to the development of specialized platforms and 
advanced statistical control 

• State of the Art and Next Generation conditioning platforms aim to improve discrete control 
of cutting behavior 

• Future advances will improve the synergy between pad, conditioner and process design 

 

 

 




