

# Effect of kinematics and abrasive particle dynamics on material removal rate uniformity during polishing

#### Armin Saeedi Vahdat<sup>1,2</sup> and S V Babu<sup>2</sup>

<sup>1</sup>Dept. of Mechanical and Aeronautical Engineering <sup>2</sup>Center for Advanced Material Processing (CAMP) Clarkson University

Potsdam, New York 13699-5725

April16, 2015





Scaling down the structures and increasing wafer size



MRR uniformity becomes more challenging

CMP kinematics based on slurry distribution and particle trajectories have a big impact on MRR profiles.

(Pressure and temperature profiles are also very important)

### **Chemical Mechanical Polishing Kinematics**

Clarkson UNIVERSITY





## **Velocity Field on Wafer Surface**

When 
$$\alpha = \mathbf{1} (\omega_p = \omega_w)$$
  
 $V_A \cong \omega_p e_0 \sqrt{(\gamma (\frac{1-\alpha}{4})/\frac{2}{3} + (1+\gamma (\frac{1-\alpha}{4})/\frac{2}{3})^2 + (1+\gamma (\frac{1-\alpha}{4})/\frac{2}{3})^2} \Rightarrow v_A \cong \omega_p e_0$   
 $\downarrow$ 

Uniform velocity field all over the wafer

Assuming uniform pressure distribution, **Preston's** equation suggests uniform MRR:

$$MRR(\mathbf{x},\mathbf{y}) = k_p v_A(\mathbf{x},\mathbf{y}) p(\mathbf{x},\mathbf{y}) \Longrightarrow MRR(\mathbf{x},\mathbf{y}) = k_p p \,\omega_p e_0 = cont$$

However experimental results suggests  $\alpha = 1$  is not a proper velocity ratio option in order to get uniform MRR profile.



## **Particle Trajectories and MRR**

Particles trapped between pad asperities and wafer are *active particles* 





# Non active abrasives cause zero/negligible MRR

MRR uniformity depends on:

Active particles trajectories distribution



Material removed along each trajectory (particle size)

## **Description of a Particle Location**

Initial location of each active particle of pad:



## **Description of a Particle Trajectory**

Time dependent trajectory of a particle in *fixed/global* coordinate:

$$\begin{bmatrix} X_A(t) \\ Y_A(t) \end{bmatrix} = R \begin{bmatrix} \cos(\varphi_0 + \omega_p t) \\ \sin(\varphi_0 + \omega_p t) \end{bmatrix}$$

### **Assumption:**

Particle leaves the wafer area and rotates with pad velocity and eventually reenters the wafer area.??



# **Description of a Particle Trajectory**



9

Time-dependent particle locations in fixed and moving coordinates are related as:

$$\begin{bmatrix} X_{A}(t) \\ Y_{A}(t) \end{bmatrix} = \begin{bmatrix} x'_{A}(t) \\ y'_{A}(t) \end{bmatrix} \begin{bmatrix} e_{0} + e_{t} \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x'_{A}(t) \\ y'_{A}(t) \end{bmatrix} = \begin{bmatrix} \cos(\alpha \, \omega_{p} \, t) & -\sin(\alpha \, \omega_{p} \, t) \\ \sin(\alpha \, \omega_{p} \, t) & \cos(\alpha \, \omega_{p} \, t) \end{bmatrix} \begin{bmatrix} x_{A}(t) \\ y_{A}(t) \end{bmatrix}$$

Carrier oscillatory motion is described using its amplitude and frequency:



Zhao, Dewen, et al. "Kinematic optimization for chemical mechanical polishing based on statistical analysis of particle trajectories." *Semiconductor Manufacturing, IEEE Transactions on* 26.4 (2013): 556-563.

## **Description of a Particle Trajectory**

Time dependent trajectory of a particle in local coordinate system can be expressed:

$$\begin{bmatrix} x_A(t) \\ y_A(t) \end{bmatrix} = \begin{bmatrix} \cos(\alpha \, \omega_p \, t) & \sin(\alpha \, \omega_p \, t) \\ -\sin(\alpha \, \omega_p \, t) & \cos(\alpha \, \omega_p \, t) \end{bmatrix} \begin{bmatrix} R \cos(\varphi_0 + \omega_p \, t) - (e_0 + A_e \sin(\omega_e \, t)) \\ R \sin(\varphi_0 + \omega_p \, t) \end{bmatrix}$$







**CMP Research Lab** 



**CMP Research Lab** 



For  $\alpha$ =0.91, 0.93,0.94,0.97 the trajectories are better distributed all over the wafer surface.

A ring with lower trajectory density is observed.



### The observed ring is an *artifact* which is induced due to the initial *particle locations*

### **Five Particle Trajectories**

The trajectory distribution density at the center of the wafer can be improved by making the carrier oscillate

#### No oscillation

#### With Oscillation



**CMP** Research Lab

## **100 Particle Trajectories**

# When number of particles increase, the trajectory distribution appears uniform but it is not.



Therefore a quantitative technique is required to measure the distribution of particle trajectories across the wafer.

### **Kinematics Parameters and Sliding Length**



# **Sliding Distance, MRR and WIWNU**

Material volume removed based on particle trajectory length:

Hence Sliding distance distribution is an indicator of WIWNU

$$\mathbf{I}$$

$$WIWNU(\%) = \frac{\sigma_{MRR}}{MRR_{mean}} \times 100 = \frac{\sigma_{L}}{L_{mean}} \times 100$$

## WIWNU vs Active Particle Number

So determine the number of active particles that leads to a realistic simulation

Using large number of particles in simulations is impractical



Zhao, Dewen, et al. "Kinematic optimization for chemical mechanical polishing based on statistical analysis of particle trajectories." *Semiconductor Manufacturing, IEEE Transactions on* 26.4 (2013): 556-563.

**CMP Research Lab** 

### **WIWNU Distribution**

<u>*Question*</u>: Whey does WIWNU converge a) to a constant value and b) that is still large?

<u>Answer</u>: The MRR increases toward the edge of the wafer even when the whole wafer surface is covered by active particles



### WIWNU vs a Parameter





### **WIWNU vs Oscillatory Motion**



# Quantitative Example of CMP Kinematics

For polishing of **300 mm** wafers on a rotary-type polishing tool with mono-dispersed slurry:

For 
$$\omega_p = 93 \ r / \min$$
  
 $e_0 = 200 \, mm$   $\Longrightarrow$   $\left\{ \begin{array}{l} \omega_w = \alpha \ \omega_p = 0.91 \times 93 \ r / \min \cong 85 \ r / \min \\ \omega_e = \frac{\omega_p}{6} \cong 15 \ r / \min \\ A_e = \frac{r_0}{5} = 30 \, mm \end{array} \right.$ 

 $WIWNU(\%) \cong 4\%$  Small variations in these numbers create a small change in the obtained WIWNU

However, some special cases need to be avoided:

$$\omega_p = \omega_w = 93 \ r / \min$$
 and  $A_e = 0 \ or \ \omega_e = 0 \ WIWNU(\%) \cong 18\%$ 

# **Large Particles Influence on WIWNU**

Film

Small

Particle

- MRR depends on the size of the abrasives
- When film thickness is larger than particle penetration depth
- Particle size dependency of MRR is projected in the Preston's constant
- $k_p(R) \propto R^2$

Clarkson

Large

Particle

When large particles are present in the slurry along with the nominal particle size

# Large and small particles effects will both be projected in the MRR profile.

Qin, Kuide, Brij Moudgil, and Chang-Won Park. "A chemical mechanical polishing model incorporating both the chemical and mechanical effects." Thin Solid Films 446.2 (2004): 277-286.

### **Large Particles Influence on WIWNU**



**CMP Research Lab** 



## **Effect of Large Particles**

The number of larger particles is assumed to be 1%-5% of the total number of active particles

Trajectories of large particles are calculated while changing their position every **2 seconds** 



**CMP Research Lab** 

# Large Particles Size and Concentration Effects



Large particles *size* can drastically deteriorate WIWNU indicating the significance of a proper slurry filtration process.

### **Scratch Growth**

UNIVERSITY

For the special case of  $\alpha = 1$  ( $\omega_p = \omega_w$ ), since each particle travels the same path over and over during the polishing

Large particles and undesired debris can create major scratches on the wafer surface.

Scratch growth on a constant path



For  $\alpha \neq 1$  ( $\omega_p \neq \omega_w$ ), since each particle travels various paths during the polishing the effect of large particles is distributed across the wafer which may minimize their unwanted effects

## **Conclusions and Remarks**

- A mathematical model to describe particle trajectories during polishing was developed.
- MRR and WIWNU were determined based on the extracted particle trajectories.
- The results showed that  $\omega_w = \omega_p$  leads to the worst MRR uniformity.
- When  $\omega_w = 0.91 \ \omega_p$ , the most uniform MRR is obtained.
- The oscillatory motion frequency and amplitude can also be optimized to improve MRR profile uniformity.
- This model is capable of explaining the effect of large particles on WIWNU and scratch growth.

### **Questions and Comments**





#### Life Before CMP





Life After CMP



### Thank you for your attention.

