CMPUG April 2015

FEOL CMP Process and Consumables Characterization Vehicle for 14nm Node and Beyond

SEMATECH: J. Nalaskowski, D. Penigalapati, B. Bunday, K. Petrarca, A. Vert, F. Goodwin, R. Hill, S. Papa Rao.
SUNY Poly CNSE: T. Burroughs, S. Bennett, M. Rodgers, C. Borst, B. Baker-O'Neal, F. Tolic

SEMATECH/SUNY Poly CNSE Advanced Planarization Center Accelerating Solutions Through Synergy

SEMATECH/RF Confidential

© SEMATECH, Inc.

MATECH, SEMATECH, Inc. and the SEMATECH logo are registered service marks of SEMATECH, Inc. All other service marks and trademarks are the property of their respective owners.

Planarization Test Masks: Past and Present

SEMATECH/MIT mask-set became the *de facto* CMP workhorse for the industry in the late 90's

Features

- Comprehensive geometries
- Multi-layer topography

Value

- Process characterization
- Consumable benchmarking
- Standardization of results

20 years of scaling & new materials demand an updated CMP standard mask-set to meet sub-14nm challenges

SEMATECH SUNY POLYTECHNIC

New Mask-Set Development – Industry Survey

- SEMATECH/SUNY Poly CNSE Advanced Planarization Center engaged in development of next-generation, industry-standard CMP test mask with input from the industry
 - SEMATECH performed survey across CMP industry with respect to technology and macros priorities, layout geometries, metrology techniques
- Over 90% responders graded importance of access to new CMP mask set as important or critical

14/16 nm Geometry Bench Mark

Layer	Company A		Company B		Company C		This Mask	
	CD	Pitch	CD	Pitch	CD	Pitch	CD	Pitch
Active	8	42				48	10	48
Gate	29	70		78		90	30	90
Contact	29	70					40	90
M1	28	52- 56		64		64	30	64
Via	28	52					30	128
M2	28	54					30	64

 Cost effective short-loop test vehicle with node relevant geometries

FEOL Test Vehicles

FEOL (26mm*33mm)	CD (nm)	Pitch (nm)	
SADP fin/active	10	48	
Active mandrel	38	96	
Active cut	96	192	
Active block	38	96	
Gate	30	90	
Contact	40	90	
M1 /fatline	1k	1.09k	

- SADP fin/active: node relevant
- LE gate & contact: to control complexity/cost
- LELE M1/M2: node relevant
- BEOL test vehicle will follow

FEOL Short Loop Flow

FEOL Self-Aligned Double Patterning Process Development

Evaluation of multiple materials in progress to enable SADP flexibility/scaling

Bulk Fin Process Development

FEOL Mask Layout Overview

SEMATECH SUNY POLYTECHNIC

SEMATECH/RF Confidential

4/16/2015

Aggressive Density Macros

Evaluate CMP consumable interaction with topography to provide planarization windows across a range of CD & density

Dummy Fill Macros - Examples

Characterize effect of dummy fill density, shape and exclusion on planarization of small and large structures

SEMATECH SUNY POLYTECHNIC

SEMATECH/RF Confidential

Simple E-test Macros Examples

Test influence of CMP and post-CMP cleaning on electrical properties of films

Serp/Combs and Opens/Shorts Line Macros

Detect open and short defects by e-test and monitor post-CMP line erosion, corrosion, and dendritic growth

4/16/2015

Simplified Functional FinFET Devices

Enable direct correlation of physical and e-test data

Range of nested and isolated devices to test

SEMATECH SUNY POLYTECHNIC

Advanced Metrology: Patterning Grating & Overlay

 Simulate the metrology challenges for Quad/Hexa/Octa-patterning by making DOEs of complex period mandrels for SADP.(L40P100)

Overlay – AIMs & SCOL

To cover current and future overlay methodologies

SEMATECH SUNY POLYTECHNIC

SEMATECH/RF Confidential

Defect Array: 14nm SRAM Cell with Intentional Defects

- Large SRAM cells creatively designed to enable printing of challenging defects
- Includes various sizes and types of defects

SEMATECH SUNY POLYTECHNIC

SEMATECH/RF Confidential

Reticle Enhancement Technique - OPC

- Optical proximity correction (OPC)
 - Modifications to mask features which can improve:
 - Printability onto the wafer
 - Increase process control
 - Improve yield
- Two types: Rule-based OPC vs Model-based OPC
 - Rule based OPC
 - Device features are modified based on a set of predetermined design rules
 - Suitable for less aggressive mask designs
 - Model based OPC
 - Uses lithography process analysis to develop a corrections model
 - Suitable for aggressive mask designs

Model based OPC was applied to Planarization Center CMP mask

Design w/o OPC

Wafer without OPC

Design with OPC

Wafer with OPC

Summary

- SEMATECH/SUNY Poly CNSE Advanced Planarization Center actively engaged in development of new industry standard CMP oriented test vehicle for 14nm and beyond
- Test vehicle will consist of comprehensive array of topographic and e-testable features for CMP process development, consumables testing and metrology optimization
- FEOL macro design completed and validated by selected industry members
- Finalized OPC model and ready for transfer to glass
- BEOL CMP test vehicle will follow