Process Optimization in Post W CMP In-situ Cleaning

Hong Jin Kim, Si-Gyung Ahn, Liqiao Qin

CMP, Advanced Module Engineering
GLOBALFOUNDRIES, USA
Contents

• W CMP process for sub 14nm device
 – W Gate CMP
 – W Contact (TS, CB) CMP

• Post W CMP cleaning process optimization
 – Device failure mode and role of post CMP in-situ cleaning
 – Brush cross contamination and optimization of post CMP brush cleaning

• Summary
RMG Process Flow

- ILD0 deposition post transistor formation
- Poly open CMP
- Poly etch (removal)
- Metals deposition
- Metal gate CMP

Source: Intel

http://electroiq.com/blog/2010/03/integrating-high-k/

- Advantages of HKMG: 1) good thermal budget, 2) higher strain from embedded SiGe S/D
MOL Process Flow

- RMG Formation
- Oxide deposition
- TS litho/etch
- W contact deposition
- W Contact CMP
Defect from CMP Process

• Major defects induced by CMP are: 1) organic residue, 2) surface particle, 3) scratch, 4) surface flake, 5) grain roughness and 6) pattern damage

• *Due to no redundancy, each defect directly has an impact on the device performance or yield* → all kinds are potential killer defect

• Organic residue and surface particle are the most frequently observed

• Post W CMP defects are strongly dependent on post in-situ cleaning process

• Consumables for minimal defect are required: ultra-fine/colloidal abrasive or abrasive-free slurry, soft pad without sacrificing planarity, mild conditioning with proper pad surface roughness

• In-situ clean from CMP tool is the most effective for clean wafer since it cleans wafer with wet state
Types of Defect from Brush

1. Slurry abrasive
2. Organic residue
3. Metal flakes
4. Scratch/surface roughness
Effect of Organic Residue on Device Failure

1) Organic residue post W gate CMP

2) Post oxide deposit

3) Etch for contact formation → organic residue etched

4) Metal deposition → fill in organic residue area → electrical failure

• Even very small organic residue (e.g. < 100nm) makes electrical short between gate and contact due to scaling of pitch size
Effect of Abrasive Particle on Device Failure

1) Abrasive particle at post W gate CMP

2) Post oxide deposit

3) Etch for contact formation → particle un-etched

4) Metal deposition → contact un-landed → open failure

- Even very small abrasive particle (e.g. < 100nm) makes contact open failure
- Pitch size is major issue for sub-14nm device → defect-free process required
Post in-situ Cleaning Optimization

• Brush: nodule hardness and porosity \rightarrow softer brush (material property) with optimum porosity
• Nodule design, nodule height uniformity, nodule surface treatment and optimum contact area \rightarrow minimize brush cross contamination to wafer
• Brush gap, rotational speed, and chemical flow rate
• Friction between wafer and brush
• **Brush loading \rightarrow brush breakin (pre-broken brush preferred)**
Post in-situ Cleaning Optimization

- Post CMP in-situ cleaning has huge amount of room to improve defectivity. For example, with the same tool set, more than 90% defectivity can be reduced by optimization.

- New cleaning module/chemistry is open area for defect reduction.
Brush break-in is the simplest and most effective way to increase PRE (Particle Removal Efficiency) and to make clean wafer
Cross-contamination Effect

H-J Kim et.al., “Study of the cross contamination effect on post CMP in-situ cleaning process”, Microelectronic Engineering, in press
Cross-contamination Effect I: Brush RPM

![Graph showing particle count vs brush rotational speed (RPM)](image)

- 100 RPM
- 200 RPM
- 300 RPM
- 400 RPM
- 500 RPM
- 600 RPM

- Particle Count
- Brush Rotational Speed (RPM)
Cross-contamination Effect II: Brush Gap

-1.25mm -1.0mm
-0.75mm -0.5mm
-0.25mm 0.0mm
Cross-contamination Effect III: Flow Rate

Graph showing particle count vs. DI flow rate with data points for 250ml/min, 500ml/min, 750ml/min, 1000ml/min, 1250ml/min, and 1500ml/min.
Brush Contact Sequence

Case I: direct touch

Case II: soft-landing
Minimization of Cross Contamination

Direct touch

Soft-landing

Brush mark

Soft-landing to wafer can minimize particle contamination from brush
Summary

• Sub-14nm device fabrication requires robust post CMP in-situ cleaning to enhance device performance and yield

• Post CMP in-situ cleaning is the most effective way for clean wafer. Due to device complexity, post CMP ex-situ cleaning has limited process window

• Particle removal efficiency should be maximized, however minimizing brush cross contamination is more important

• Brush break-in and soft-landing process are key knobs to minimize contamination from brush

• **Advanced brush material/structure is required to overcome post CMP cleaning issues in addition to process optimization**
Thank You!