“Advances in Ceria Slurries to Address Challenges in Fabricating Next Generation Devices”
Outline

- Introduction to Ferro
- Historical Products
- Rate Accelerants
- Fast Oxide CMP Slurry
- Path to Next Generations of STI and Fast Oxide Slurries
We are a leading, global producer of performance materials and chemicals

- Ferro was founded in 1919 in Cleveland, Ohio. Porcelain enamel was the Company’s original business and it remains an important product line today.

- We are a leading, global producer of performance materials and chemicals sold to manufacturers worldwide.

- Our customers represent more than 30 industries and span 100-plus countries.

- We have manufacturing facilities in The Americas, Europe/North Africa and Asia-Pacific.

- Approximately 4,600 employees work at sites in 26 countries.

- Ferro is publicly-owned; our shares trade on New York Stock Exchange under the symbol FOE.
Ferro’s Core Technologies

- Particle Engineering
- Color and Glass Science
- Surface Chemistry and Surface Application
- Formulation
Penn Yan Site

- Located on 63 Acres
- Lake Frontage of 1100 feet
- 320,000 Ft2 Under Roof
- Global R&D Center: Dielectrics and Surface Technologies
- Customer Service Center for:
 - Cleveland, OH
 - Vista, California
 - Penn Yan, NY
Penn Yan Products

- Manufacturer of ceramic powders and slurries

Dielectrics
- High purity engineered powders and formulations for the multi-layer ceramic capacitor (MLCC) industry

Surface Finishing Material
- Zirconia, Ceria and Alumina based powder and slurry formulations for the LCD glass, glass ceramic hard disk, flat glass, cover glass, precision glass, sapphire, plastic lens, metals and automotive polishing applications

CMP
- Ceria based powders and formulations used in semiconductor applications
Ferro’s Historical Ceria STI Slurrys

<table>
<thead>
<tr>
<th></th>
<th>Dmean (nm)</th>
<th>D0 (nm)</th>
<th>LPC’s > 0.5 um</th>
<th>% Ceria</th>
<th>HDP Removal Rate (A/min.)</th>
<th>Nitride Removal Rate (A/min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Gen STI Slurry</td>
<td>145</td>
<td>450</td>
<td>500,000</td>
<td>4</td>
<td>2000</td>
<td><20 A/min.</td>
</tr>
<tr>
<td>2nd Gen STI Slurry</td>
<td>145</td>
<td>450</td>
<td>400,000</td>
<td>4</td>
<td>2700</td>
<td><20 A/min.</td>
</tr>
</tbody>
</table>
New Device Requirements

◆ As devices get more complex, the demands (in addition to the basic planarity requirement), on the CMP slurries that enable their construction increase:

Defects

- Continuous push for reduction in defects
- LPC control has been demonstrated to be key

Rate

- More complex designs require:
 - An increase in removal rate due to the number/thickness of layers requiring polishing
 - The ability to polish multiple wafer/layer types with the same slurry
How do we get there?

Fundamental understanding is key!
Ceria Polishing Mechanism: Surface Chemical Action

- As opposed to other abrasive types (i.e., Silica, alumina, zirconia, etc.), ceria abrasives have a large surface chemical action during glass polishing.

- By control of the ceria particle characteristics and the surface active chemical components in a formulation, ceria systems can be highly tunable in terms of oxide removal rates.

Ceria Polishing Mechanism: Surface Oxidation State

- H_2O_2 can shut down oxide removal rates using ceria slurries (more Ce^{4+} on the surface shuts down oxide removal rates)
 - Effect not seen with other abrasives (silica, zirconia, alumina, titania)

- Further studies have shown that Ce^{3+} sites on the surface of ceria particles is critical for the silicon dioxide removal rate
Ferro has developed an additive that stabilizes the Ce$^{3+}$ on the surface of the ceria, leading to a higher population of Ce$^{3+}$ sites and the acceleration of the oxide removal rate

- Additive is stable in solution (beyond 12 month shelf life)
- Additive also buffers pH in low regime (pH=3-4)
Novel Rate Accelerant Chemistry

Graph: Extremely fast TOX removal rate!

Table:

<table>
<thead>
<tr>
<th>Particle</th>
<th>145 nm ceria</th>
<th>130 nm ceria</th>
<th>130 nm ceria</th>
<th>120 nm ceria</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Accelerant Package</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

All systems tested at 3 wt. % ceria
Current HVM Fast Oxide Slurry

- Fast Oxide Slurry was formulated with extra ceria and accelerant (+/+) and reduced ceria and accelerant (-/-) and compared to standard.
- Formulation proven to be robust across formulation space studied.

>15,000 Angstroms/minute BPSG removal!
Ferro’s Ceria STI Slurry Evolution

<table>
<thead>
<tr>
<th></th>
<th>Dmean (nm)</th>
<th>D0 (nm)</th>
<th>LPC’s > 0.5 um</th>
<th>% Ceria</th>
<th>HDP Removal Rate (A/min.)</th>
<th>Nitride Removal Rate (A/min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Gen STI Slurry</td>
<td>145</td>
<td>450</td>
<td>500,000</td>
<td>4</td>
<td>2000</td>
<td><20 A/min.</td>
</tr>
<tr>
<td>2nd Gen STI Slurry</td>
<td>145</td>
<td>450</td>
<td>450,000</td>
<td>4</td>
<td>2700</td>
<td><20 A/min.</td>
</tr>
<tr>
<td>3rd Gen STI Slurry</td>
<td>130</td>
<td>300</td>
<td><40,000</td>
<td>3</td>
<td>3500</td>
<td><20 A/min.</td>
</tr>
<tr>
<td>4th Gen STI SRS-2092</td>
<td>130</td>
<td>300</td>
<td><10,000</td>
<td><0.5</td>
<td>2700</td>
<td><20 A/min.</td>
</tr>
</tbody>
</table>

Continuous improvement toward lower ceria loading and lower LPC’s for lower wafer level defectivity and lower Fab cost of ownership
SRS-2092: Low Solids STI Slurry

- Ferro has designed its next generation STI slurry
- It is designed to be diluted (typically 1 part slurry : 2 parts water)
 - Lower COO at <0.5% ceria loading
 - Lower Defectivity at smaller particle sizes

HDP
2658 A/min RR

Nitride
4 A/min RR
- Extremely long overpolish window with excellent dishing performance!

Trench Oxide Values

Ideal Trench Oxide Thickness = 5500Å

Active Oxide Values

Endpoint Time based upon Act. Ox. data
Where to next?

- Reduced LPC’s/smaller particles to further reduce defects
Next Generation Fast Oxide Slurry

<table>
<thead>
<tr>
<th></th>
<th>Dmean (nm)</th>
<th>D0 (nm)</th>
<th>LPC’s > 0.5 um</th>
<th>TOX RR (Ang./min)</th>
<th>TEOS RR (Ang./min.)</th>
<th>BPSG RR (Ang./min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Fast Oxide</td>
<td>130</td>
<td>296</td>
<td>100,000</td>
<td>7189</td>
<td>12,250</td>
<td>14,821</td>
</tr>
<tr>
<td>Low Dmean</td>
<td>69</td>
<td>131</td>
<td>1,700</td>
<td>6139</td>
<td>11,651</td>
<td>11,352</td>
</tr>
</tbody>
</table>

70 nm ceria with extremely fast removal rates
Ferro has developed a low Dmean version of SRS-2092 that has similar polish behavior at approximately half the particle size.

- LDM SRS-2092 ~ 70 nm
- SRS-2092 ~ 130 nm
Where to next?

- Further removal rate improvements
 - How will we get there?
Ferro’s Rate Increase Developmental Program

- Ferro is in the middle of a large rate increase developmental program

- A fundamental 3 path approach is being taken:
 - Alternate Ceria’s
 - Alternate Processing
 - Alternate Accelerants
Current State

- Based upon 120 nm Dmean
 - With the intent that defects will be reduced compared to Std. Fast Oxide Slurry
 - LPC’s are a similar order of magnitude as the sub 70 nm particles

- Combination of alternate processing and alternate accelerants
 - Increase in oxide removal rates with smaller particles (even with a reduction in ceria %)

![Removal Rate (% of Std. Fast Oxide Slurry)](chart.png)
Path Forward

- **Removal Rate Improvement:**
 - Optimize best options to date to achieve greater than 40% increase in removal rate vs. Std. Fast Oxide Slurry with improved defect levels
 - Continue fundamental work to lead to breakthroughs necessary to increase removal rates greater than 80% vs. Std. Fast Oxide Slurry while further improving defect levels

- **Defect Improvement:**
 - Integrate the learnings above with 70 nm and smaller particles
 - Incorporate the learnings above in next generation STI Slurries to enable the use of 70 nm and smaller particles and further reduce ceria levels
Acknowledgements

- Bob Her
- Brian Santora
- Nate Urban
- Mohammed Megherhi
- Mike Maxwell
- Dave Walker