

AVS CMP User Group Meeting

Daniel S. Dickmann 4/16/15

"Advances in Ceria Slurries to Address Challenges in Fabricating Next Generation Devices"

Outline

- Introduction to Ferro
- Historical Products
- Rate Accelerants
- Fast Oxide CMP Slurry
- Path to Next Generations of STI and Fast Oxide Slurries

We are a leading, global producer of performance materials and chemicals

- Ferro was founded in 1919 in Cleveland, Ohio. Porcelain enamel was the Company's original business and it remains an important product line today.
- We are a leading, global producer of performance materials and chemicals sold to manufacturers worldwide.
- Our customers represent more than 30 industries and span 100-plus countries.
- We have manufacturing facilities in The Americas, Europe/North Africa and Asia-Pacific.
- Approximately 4,600 employees work at sites in 26 countries.
- Ferro is publicly-owned; our shares trade on New York Stock Exchange under the symbol FOE.

Ferro's Core Technologies

- Particle Engineering
- Color and Glass Science
- Surface Chemistry and Surface Application
- Formulation

Penn Yan Site

Penn Yan Products

Manufacturer of ceramic powders and slurries

Dielectrics

 High purity engineered powders and formulations for the multi-layer ceramic capacitor (MLCC) industry

Surface Finishing Material

 Zirconia, Ceria and Alumina based powder and slurry formulations for the LCD glass, glass ceramic hard disk, flat glass, cover glass, precision glass, sapphire, plastic lens, metals and automotive polishing applications

CMP

Ceria based powders and formulations used in semiconductor applications

Ferro's Historical Ceria STI Slurrys

	Dmean (nm)	D0 (nm)	LPC's > 0.5 um	% Ceria	HDP Removal Rate (A/min.)	Nitride Removal Rate (A/min)
1 st Gen STI Slurry	145	450	500,000	4	2000	<20 A/min.
2 nd Gen STI Slurry	145	450	400,000	4	2700	<20 A/min.

New Device Requirements

As devices get more complex, the demands (in addition to the basic planarity requirement), on the CMP slurries that enable their construction increase:

Defects

- Continuous push for reduction in defects
- LPC control has been demonstrated to be key

Rate

- More complex designs require:
 - An increase in removal rate due to the number/thickness of layers requiring polishing
 - The ability to polish multiple wafer/layer types with the same slurry

How do we get there?

Fundamental understanding is key!

Ceria Polishing Mechanism: Surface Chemical Action

 As opposed to other abrasive types (ie. Silica, alumina, zirconia, etc.), ceria abrasives have a large surface chemical action during glass polishing

- Lee Cook, Journal of Non-Crystalline Solids 120 (1990), p. 152-171
- By control of the ceria particle characteristics and the surface active chemical components in a formulation, ceria systems can be highly tunable in terms of oxide removal rates

Ceria Polishing Mechanism: Surface Oxidation State

Silica abrasive

Ceria abrasive

- H₂O₂ can shut down oxide removal rates using ceria slurries (more Ce⁴⁺ on the surface shuts down oxide removal rates)
 - Effect not seen with other abrasives (silica, zirconia, alumina, titania)
 - R. Manivannan, S. Ramanathan, Applied Surface Science 255 (2009), 3764-3768.
- Further studies have shown that Ce³⁺ sites on the surface of ceria particles is critical for the silicon dioxide removal rate
 - Veera Dandu (Clarkson thesis, also presented at 17th Annual International Symposium on Chemical Mechanical Planarization, August 12th-15th, 2012, Lake Placid, NY)

Cerium Surface Oxidation State

- Ferro has developed an additive that stabilizes the Ce³⁺ on the surface of the ceria, leading to a higher population of Ce³⁺ sites and the acceleration of the oxide removal rate
 - Additive is stable in solution (beyond 12 month shelf life)
 - Additive also buffers pH in low regime (pH=3-4)

Novel Rate Accelerant Chemistry

Particle	145 nm ceria	130 nm ceria	130 nm ceria	120 nm ceria	
pН	low	low	high	low	
Accelerant Package	no	no	no	yes	

All systems tested at 3 wt. % ceria

Current HVM Fast Oxide Slurry

>15,000 Angstroms/minute BPSG removal!

- Fast Oxide Slurry was formulated with extra ceria and accelerant (+/+) and reduced ceria and accelerant (-/-) and compared to standard
- Formulation proven to be robust across formulation space studied

Ferro's Ceria STI Slurry Evolution

	Dmean (nm)	D0 (nm)	LPC's > 0.5 um	% Ceria	HDP Removal Rate (A/min.)	Nitride Removal Rate (A/min)
1 st Gen STI Slurry	145	450	500,000	4	2000	<20 A/min.
2 nd Gen STI Slurry	145	450	450,000	4	2700	<20 A/min.
3 rd Gen STI Slurry	130	300	<40,000	3	3500	<20 A/min.
4 th Gen STI SRS-2092	130	300	<10,000	<0.5	2700	<20 A/min.

Continuous improvement toward lower ceria loading and lower LPC's for lower wafer level defectivity and lower Fab cost of ownership

FERRO. Where innovation delivers performance

SRS-2092: Low Solids STI Slurry

- Ferro has designed its next generation STI slurry
- It is designed to be diluted (typically 1 part slurry : 2 parts water)
 - Lower COO at <0.5% ceria loading
 - Lower Defectivity at smaller particle sizes

HDP 2658 A/min RR

Nitride 4 A/min RR

SRS-2092 Over-Polish Behavior

Extremely long overpolish window with excellent dishing performance!

Where to next?

 Reduced LPC's/smaller particles to further reduce defects

Next Generation Fast Oxide Slurry

130 nm ceria

70 nm ceria

	Dmean (nm)	D0 (nm)	LPC's > 0.5 um	TOX RR (Ang./min)	TEOS RR (Ang./min.)	BPSG RR (Ang./min.)
Std. Fast Oxide	130	296	100,000	7189	12,250	14,821
Low Dmean	69	131	1,700	6139	11,651	11,352

70 nm ceria with extremely fast removal rates

Low Dmean SRS-2092

Ferro has developed a low Dmean version of SRS-2092 that has similar polish

behavior at approximately half the particle size

SRS-2092 ~ 130 nm

LDM SRS-2092 ~ 70 nm

Where to next?

- Further removal rate improvements
 - ➤ How will we get there?

Ferro's Rate Increase Developmental Program

- Ferro is in the middle of a large rate increase developmental program
- A fundamental 3 path approach is being taken:
 - Alternate Ceria's
 - Alternate Processing
 - Alternate Accelerants

Current State

- Based upon 120 nm Dmean
 - With the intent that defects will be reduced compared to Std. Fast Oxide Slurry
 - LPC's are a similar order of magnitude as the sub 70 nm particles
- Combination of alternate processing and alternate accelerants
 - Increase in oxide removal rates with smaller particles (even with a reduction in ceria %)

Path Forward

Removal Rate Improvement:

- Optimize best options to date to achieve greater than 40% increase in removal rate vs. Std. Fast
 Oxide Slurry with improved defect levels
- Continue fundamental work to lead to breakthroughs necessary to increase removal rates greater than 80% vs. Std. Fast Oxide Slurry while further improving defect levels

Defect Improvement:

- Integrate the learnings above with 70 nm and smaller particles
- Incorporate the learnings above in next generation STI Slurries to enable the use of 70 nm and smaller particles and further reduce ceria levels

Acknowledgements

- Bob Her
- Brian Santora
- Nate Urban
- Mohammed Megherhi
- Mike Maxwell
- Dave Walker