Introducing Advanced PCMP Cleaning Solutions

With Surfactanized Metal Inhibitors and Oxygen Scavengers New Particle Remover

By

Geoffrey Yuxin Hu, Brizon Inc

Lily Yao, Western Digital Corporation

Contents

- Challenges of PCMP Cleaning
- Background and Principle of PCMP Cleaning
- ➤ New Concepts of Cleaning Chemistry
- Fab Experimental Data and Results
- > Summary
- > Acknowledgment

Challenges of PCMP Cleaning Solution

Multiple materials in Dynamical CMP and PCMP system

- Trace metals and ions: Cu, Ni, Fe, Ru, Ti, NiFe, CoFe, Cr, etc)
- ➤ Dielectric material SiO2, Al2O3, etal.
- > Slurry residuals, PSD.
- Organic polymer materials

Cleaning magnesium for different materials

- > Cleaning chemistry vs. CMP chemistry, pH, Oxidation, Corrosion, Inhibites,
- Metal surface cleaning
- Dielectric surface cleaning
- Wafer surface topography, structures, and Macro & micro- scratching

Cleaning Tool and Cleaning functions

Roll-Roll Brushing, Pencil brushing, Masonic, risibility, dry methods

■ Wafer quality, CMP process performance

- > Wafer aging, CMP process performance; Recontamination
- partial dried wafers, wafer surface slurry residual pre-treated;

Li	Be		Elements in TFH CMP System												N	0	F	10 Ne
Na	Mg				ın ı	гп	CIV	IP S	sys	ten	1		Äl	Si	P	S	ČI.	Ar
ĸ	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni Ni	Cu	⁵ Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		" Y	Źr	Nb	Mo	Tc	Ku	Rh	Pd	Ag	Cd	În	Sn	Sb	Te	13 1	Xe
ts Cs	₩ Ba	\$7-70 *	Lu	Hf	Ta	W	75 Re	76 Os	ir	Pt	Au	Hg	ŤI	Pb	Bi	Po	Åt	Rn
Fr	Ra	89-102 * *	Lr	Rf	Db	Sg	Bh	108 Hs	Mt	Uun	Uuu	Uub		Uuq				

Li	Be	Elements											B	c	Ň	ō	F	Ne
Na	Mg				ın ı	CS	CIVI	75	yst	em			Al	Si	P	16 S	ČI	Ar
ĸ	Ča		Sc	Ti	V	Čr	Mn	Fe	Co	Ni Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		35 Y	Źr	Nb	Mo	Tc	Řu	Rh	Pd	Āģ Āģ	Cd	În	Sn	Sb	Te	\$3 	Xe
Čs.	Ba	57-76 *	Lu	Hf	Ta	W W	Re	78 Os	lr	Pt	Ä Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	89-102 * *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				

TFH CMP

Key Issues of Cleaning Chemistry

- ☐ Unbalanced of Hydrophilic/Hydrophobic of Surfactants
 - ➤ Poor Vehicle of Slurry
 - Poor uniformity slurry alone the pad
 - ➤ Poor Surface modification on Particles, such as SiO2
 - -Aggregation of Particles
 - -Wide distribution of particles Macro- and micro- scratching
 - Residual slurry particles, Al2O3, Colloid SiO2
- ☐ Incompatible of Metal Inhibitors/Oxygen Scavengers
 - Ununiformed dispersion of particles in the solution
 - -Corrosion of metal
 - -Recontamination
 - > Aggressive Chemicals or high, low pH
 - -Corrosion
 - -Macro- or micro Scratching
 - -Poor re-rinsibility

Cleaning Classification Fundamental

- ☐ Cleaning magnesium
 - > Hydrophilic/Hydrophobic balance
 - Surface tension
- Metal cleaning with inhabitable (BTA),
 - Better removing particle,
 - Corrosion on metal
 - pH range
- □ Classic Non-ionic Surfactants (NIS)
 - Removing particles
 - Removing Organic Contaminations
- ☐ Ionic Surfactants (IS)
 - Aliphatic phosphorous surfactants
 - Metal surface protection
 - > Residual mono-layer
- □ Chelating/Complex Chemicals
 - Cleaning/removing metal ions, and oxides

New Concept

- Surfactanized Metal Inhibitor and cleaning functions

□ Surfactanized Metal Inhibitors

- > Hydrophilic metal inhibitor on one side
- Short aliphatic hydrophobic tail
- Maximized protection on metal, Ni, Fe and Cu

☐ Surfactanized Oxygen Scavengers

- Long ethoxylated hydrophilic tail
- Hydrophobic oxygen scavenger
- Max scavenged oxygen in whole CMP process

☐ Special Surfactants

- Ethoxylated hydrophilic tail
- Short hydrophobic chain with chelate agent
 - Not ethylenediamine series
 - ➤ Much better vehicle

☐ Components:

- Special Non-ionic surfactants
- Mixed Surfactanized Metal inhibitors
- And Surfactanized oxygen scavengers
- Additional Metal inhibitors And Anti-oxidant agents
- Chelating agents
- ➤ Particle removing agene for particles, Al2O3, SiO2 et al.

BriteClean System - How does it work

Hydrophilic Aliphatic Metal inhibitor head Hydrophobic tail

Anti-oxidant Ethoxylated Hydrophilic Tail Hydrophobic Head

Briteclean-0 (0plus)

Briteclean-1

Briteclean-0:Briteclean-1 = 1:1In 50 time aqueous dilution

Briteclean-0:Briteclean-1 = 1:1 No dilution

Phase separation

BriteClean System – pH Control and Application Conditions

	Briteclean - 0/Plus	Briteclean - 1	Briteclean-ACP
Pre/Post Cleaning Process	YFS	YES	YES
Slurry Additives	YES	YES	YES
Storage/Buffer	NO	NO	YES
Application	Need to mixing with BC-1 or BC-ACP	Need to mixing with BC-0/plus	Solely
Usage	1% - 5%	1% - 5%	1% - 4%

Recommendation: BC-0(plus)/BC-1 = 1:1; Diluted 1%-2% times with DIW

☐ Process Conditions:

- > CMP Tool (8inch): Applied Mirra; Ebara; 6DSSP(Strausbaugh)
- Slurry: Cabot MH8xx system; ASL system
- Pad applied: IC1000; Sub IV
- Cleaning Tool: DNS, SSEC
- Cleaning solution: Briteclean-0 and Briteclean-1; Briteclean-0plus
 - Mixed: Ratio 1:1 in 1.0% ~2% Aqueous media
- Wafer: Cu, NiFe, Low key, SiOx, Al2O3, CoFe, Ru, etc

BriteClean System -Applications

- ☐ BriteClean Productions are qualified in production line and have been used as POR
- Particle Reduction
 - BC cleaning system showed better particle count reduction
 - ➤ BC cleaning system showed >40% particle reduction on device production wafers

BriteClean System -Applications

Surface Quality improved

- Prevent AlOx wafer surface without pitting with BC products
- Metal surface improved

Full AlOx Film pitting - long time in DIW

Cu AFM Image

No Film pitting x2 long time in **DIW+BC**

Other Cleaning Solution BriteClean Mixture

Other Cleaning Solution BriteClean Mixture Average Roughness(N=3x3): Rms=0.34nm Average Roughness(N=3x3):Rms=0.29nm

Cu SEM Image

BriteClean System -Applications

☐ Briteclean Application repeatability

Layer X CMP Comparison

Wafer ID		Mean Metal		ALO			Wafer ID		Mean Metal		ALO		
Existing		Thickness	Metal WIW	Thickness	Oxide WIW	Added	with Brite		Thickness	Metal WIW	Thickness	Oxide WIW	Added
Slurry		(FEI)-O	Sigma-O	(Nano)-O	Sigma-O	Paticles	Additives		(FEI)-B	Sigma-B	(Nano)-B	Sigma-B	Paticles
	1	261	7.3	267	10.2	217		1	263	3	249	2.7	30
	2	257	8.1	261	8.2	198		2	251	. 4	267	2.1	0
	3	265	2.4	273	3.6	229		3	265	4.2	253	3	139
	4	263	8.3	268	9.4	363		4	256	2.9	263	1.9	271
	5	251	6.1	261	7.5	107		5	258	3.1	262	2.4	. 0
	6	278	5.9	283	6.9	267		6	261	3.3	262	2.9	225
	7	255	6.9	267	8.1	271		7	260	4.1	261	2	57
	8	263	7.2	267	7.8	400		8	266	2.8	265	2.5	68
Mean		261.63	6.53	268.38	7.71	256.50	Mean		260.00	3.43	260.25	2.44	98.75
Std. Dev.		7.60	1.75	6.61	1.84	86.85	Std. Dev.		4.64	0.54	5.72	0.39	96.27
3 Sigma		22.79	5.24	19.84	5.52	260.55	3 Sigma		13.91	1.63	17.15	1.16	288.82
Max.		278	8.3	283	10.2	400	Max.		266	4.2	267	3	271
Min.		251	2.4	261	3.6	107	Min.		251	2.8	249	1.9	0
Range		27	5.9	22	6.6	293	Range		15	1.4	18	1.1	271

Conclusions

- □ BriteClean Productions using new surfactanized metal inhibitor and anti-oxidant cleaning magnesium
- ☐ Cleaning all metal residuals, dielectrics materials, slurry residual and photo residual etc with one mixed solution.
- ☐ High cleaning efficiency with particle reduction and better surface quality
- ☐ Easier handling and simple Process on all tools
- ☐ The products have been qualified in production line and used as POR for over 2 years.
- ☐ More advanced products are available for better cleaning efficiency.
- □ Acknowledgement
 - NCCAVS
 - Western Digital
 - Brizon Inc (www.brizon.net)