Outline

- **Need of soft pads**
 - Driving force – defects

- **Challenges of soft pads**
 - Usable pad life
 - Process stability – rate, selectivity, topography
 - Batch to batch variation

- **CMC approach to soft pads**
 - Why thermoplastic pads?
 - Manufacturing technology advantage

- **Pads for barrier application**
 - Test results for pad stability and defects
Why Soft Pads?

- **Defects: Particle and scratches**
 - Slurry: complex designs to control selectivity for topography
 - New designs, new materials, new requirements
 - Pad first or slurry first – difficult choice
 - Pad should be capable to remove residue and avoid scratch
 - Challenge is how to achieve integration requirement while maintaining low defects

- **Process knobs for pads**
 - Shore hardness – measure of resistance to indentation
 - Softer material leads to lower defects, but poor topography
 - Material hardness – resilience, modulus
 - Higher resilience and lower modulus helps lower defects
 - Pore structure – slurry holding capability, compressibility
 - Higher slurry holding capability leads to lower particle and scratch defects
 - Abrasion resistance – pad life
 - Pad life should be similar to hard pad/bulk polish step
Why Thermoplastic?

Thermoset vs. Thermoplastic
- For soft material, differences of TPU vs. TSU are small – cross linking absent in both cases
- No metal contamination, or additives in thermoplastic material
- \((\text{Isocyanate})_1\text{ mole} + (\text{diol + Polyol})_1\text{ mole}\) → polyurethane
 - Tight stoichiometry control of components will lead to non-cross linked TPU
- Hydrolysis resistant, low abrasion

CMC Foaming Technology
- Non-chemical blowing agent technology
- Solid State Foaming
 - CO₂ saturated sheet is removed and is exposed to foaming conditions (above Tg)
 - Microcellular structure is formed as a result of system responding to CO₂ escape (nucleation and growth)
<table>
<thead>
<tr>
<th>Porosity</th>
<th>25D</th>
<th>42D</th>
<th>50D</th>
<th>60D</th>
<th>72D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High (>60%)</td>
<td>F99</td>
<td></td>
<td>F66</td>
<td></td>
<td>F33</td>
</tr>
<tr>
<td>High (40-50%)</td>
<td>F12</td>
<td>F9</td>
<td>F8</td>
<td>F6</td>
<td>F3</td>
</tr>
<tr>
<td>Medium (20%-40%)</td>
<td></td>
<td>F7</td>
<td>F5</td>
<td>F2</td>
<td></td>
</tr>
<tr>
<td>Low (<20%)</td>
<td>F11</td>
<td>F10</td>
<td>F4</td>
<td>F1 / D100</td>
<td></td>
</tr>
</tbody>
</table>
CMC Soft Pad Portfolio

- Resin
 - 87 A, 70A
 - Window: FullVision®

- Porosity
 - Low
 - 10 ± 5
 - Medium
 - 30 ± 5
 - High
 - 70 ± 5*

- Pore size
 - Small
 - 20 ± 10
 - Medium
 - 40 ± 10
 - Large
 - 60 ± 10

- Surface
 - Smooth

- Grooves
 - XY
 - Conc.
 - Combo
D2xx Process Flow

1. **Polycarbonate substrate**
 - Extrusion
 - Top Pad Foam & Sheeting
 - Lamination
 - Lamination Adhesive
 - Die-cut
 - Window Insertion (optional)
 - Grooving
 - Cleaning, Bagging
 - Packaging (Box)
 - Quality Data Verification (CoA)
 - Ship

2. **Surfacing**
 - Backside
 - Topside

3. **Platen Adhesive**
 - Injection Mold Window

4. **TPU Resin**
Defectivity vs. Porosity

- Higher porosity pad has lower storage modulus and higher compressibility.
 - Better defects, higher rate
Polishing Rate Stability

- High porosity pads lead to high rate and lower defects
 - Ideal candidate for barrier process
 - Stable and long pad life
FullVision™* Window

- **Window Technology**
 - Unique window installation technology – TPU advantage
 - Welded windows, 100% leak tested
 - Capable to match pad resin hardness with FV window
 - UV stabilized material to ensure stable performance over pad life
 - Window hardness – match to pad resin hardness

Trademark of Applied Materials, Inc.
Thank You