Mechanistic Evaluation of Nickel-Phosphorous (NiP) CMP

Dr. Kenneth Rushing Laboratory for Advanced Surface Planarization (LASP) Manager Clarkson University

Clarkson UNIVERSITY defy convention

- Clarkson University
- Center for Advanced Surface Technology (CAST)
- Laboratory for Advanced Surface Planarization (LASP)
- XPS Evaluation of NiP Substrate
- CMP of NiP

Clarkson University

Clarkson UNIVERSITY defy convention

--Located in Potsdam, NY (north of Adirondack National Park)

--Small, private University with 50+ degree programs

--Top Tier University and third smallest, nationally ranked university

--Approximately 3,000 Undergraduate students; ~700 Graduate students

--Center for Advanced Materials Processing and CMP Service Center

CMP at LASP/CAST

Clarkson UNIVERSITY *defy* convention

Why LASP/CAST?

A unique atmosphere with the synergy of academic and industrial environments utilized to improvise and improve the current challenges prevailing in semiconductor and electronic industries.

Services Provide:

- Devoted team of CMP experts
- Complete evaluation done by Scientists and well trained CMP Engineers
- Excellent feedback to improvise/improve and deliver competitive products
- Elaborate facility and equipment

Current Materials/Projects

All substratres from

<u>25mm-300mm</u>

- BEOL
- FEOL
- HDD/Glass
- LED
- Magnetic

- Post-CMP Cleaning
- Slurry Evaluation and Characterization
- Fundamental Slurry Investigation

LASP/CAST Group

Clarkson UNIVERSITY *defy* convention

Current Members:

Yan Li Rithu Bhonsle Vincent Schade Xiangyu Niu Zhenyu Bao Kaushik Mohan Dinusha Karunaratne

Recently Departed Members:

Yongqing Lan Mingjie Zhong Shyam Vankataraman Changxue Wang Yan Mu Yuanfang Lu

Hard Drive Disk

Clarkson UNIVERSITY defy convention

➢Platter

- Rigid
- Lightweight
- Stable
- Inexpensive

NiP Layer

Ni-P alloys are deposited via an auto catalytic nickel plating process Composition contains upwards of 9% to 15% phosphorous CMP is primary method of achieving necessary flatness

Proposed method of NiP CMP

Allied High Tech Bench-top Polisher

--Designed carrier for 95mm HDD disk --Correlated results to larger machines

Customer Target MRR: \geq 300nm/min R_{a:} \leq 0.1nm (5*5 µm)

NCCAVS CMP User Group Meeting September 19th, 2013 Clarkson

defy convention

UNIVERS

NiP Surface Evaluation

X-ray photoelectron spectroscopy (XPS)

Elemental Identification

All elements except H are detectable with a detection limit of 0.1 atom% or less.

Chemical State Identification

Binding energy, peak shape and Auger parameter measurements are used to determine surface chemistry

• Depth Profiles

Sputter depth profiles are used to examine a sample as a function of depth. NCCAVS CMP User Group Meeting September 19th, 2013

8

Surface Evaluation

Clarkson UNIVERSITY defy convention

XPS full scan spectra of a disk surface

Before sputter, elements on the polished surface consist of Ni, P, O, and C

After sputter 1 min, Only Ni and P were detected.

Modified surface from CMP process/formulation is relatively thin

Surface Evaluation

90 Ni 80 Atomic Content (%) 70 60 50 40 Ο 30 С 20 Ρ 10 0 0 10 20 30 40 50 60 Sputter Time (s) **NCCAVS CMP User Group Meeting**

September 19th, 2013

Elemental depth profile

Result analysis suggest thin layer containing 'carbon' and 'oxygen'

Does not highlight exact composition on surface

Evaluate each \succ element and Angle **Resolved XPS**

10

XPS — Ni (2p)

Clarkson UNIVERSITY defy convention

September 19th, 2013

➢Nickel oxide peak found at 855.7 eV

Further identified as a combination of:
NiO (854.2 eV),
Ni(OH)₂ (856.4eV).

XPS — P (2p)

Clarkson defy convention

NCCAVS CMP User Group Meeting

September 19th, 2013

XPS — O (1s)

Clarkson UNIVERSITY defy convention

>XPS results demonstrate that the NiP surface has been oxidized into NiO, Ni(OH)₂ and NiH_xPO_y during/after polishing

Principle of Angle Resolved XPS (ARXPS)

Large Θ : surface analysis Small Θ : deeper analysis September 19th, 2013

Clarkson

defy convention

ARXPS—Ni $(2p_{3/2})$

Clarkson UNIVERSITY defy convention

ARXPS—O (1s)

Clarkson UNIVERSITY <u>defy</u> convention

NiP Oxidation Layers

$H_2OH_2OH_2OH_2OH_2OH_2OH_2OH_2O$

Ni(OH)₂, NiH_xPO_y NiO, NiH_xPO_y

Ni-P

During/After Polishing:

The disk surface contains a thin Ni(OH)₂ layer followed by a thin NiO layer

 Utilize chemical to interact with NiP oxidation layers to promote removal and corrosion protection

Surface Analysis (XPS)

Peak not present with baseline formulation (a)

Evidence of the
 Nitrogen based film
 forming compound (b)
 Peak at 399.7 eV

Tailored chemistry for effective film formation and surface protection

Polishing Performance

Clarkson UNIVERSITY defy convention

Surface Quality (AFM)

Clarkson UNIVERSITY defy convention

Baseline Formulation

R_a = 0.507 nm

Baseline with Surface Additive

R_a = 0.277 nm

Conclusions

- XPS evaluation aided in understanding the oxidation and the layer composition
- Determined that during/after polishing, the disk surface contains a thin Ni(OH)₂ layer followed by a thin NiO layer
- Use of additives specifically tailored to interact with oxide species to improve surface quality
- Achieved the desired MRR approximately 350nm/min
- Surface Quality is improved but still being evaluated as the R_a is as low as 0.27nm but not yet the desired 0.1nm

Acknowledgments

Clarkson UNIVERSITY defy convention

- Prof. Yuzhuo Li
- Dr. Ning Gao/Dr. Devon Shipp
- Dr. S.V. Babu
- Dr. Jason Keleher
- Research Group Members
- Yan Mu
- Mr. Jonathan Shu
- Mr. Yaqian Shen
- Cornell Center for Materials Research Shared Facilities

NCCAVS CMP User Group Meeting September 19th, 2013

DEPARTMENT OF CHEMISTRY & BIOMOLECULAR SCIENCE

