III/V CMP Development

The Chemical Company

Yongqing Lan¹ Sheik Ansar Usman Ibrahim² Christophe Gillot² Patrick Ong³ Julian Proelss¹

[1] BASF SE[2] BASF Belgium[3] imec Belgium

Outline

- III/V CMP background
- III/V CMP slurry formulation development at BASF
 - Basic concept development
 - Additive, component screening
 - Test on III/V patterned wafers
- Conclusion

Drivers of the electronic Industry: Speed, Efficiency, Size and Cost

The electronic industry innovates in three dimensions:

🗆 = BASE

3

Overview III/V CMP

The introduction of high mobility materials is one of the preferred solutions to fulfill the device performance below 16nm. Ge has a very high hole mobility and is thus considered as an interesting candidate for pMOS transistors. III/V materials have very high electron mobility and thus are potential materials for nMOS transistors.⁽¹⁾ Chemical mechanical planarization plays a critical role to enable the integration of Ge, III/V materials, requiring good planarization performance as well as control of toxic gas release to meet EHS requirements.

Ge and InGaAs are candidates to replace Si as channel material for high-mobility devices

Table 1 – overview III V materials for CMP

Epi Sequence	CMP
1. InP/In _{0.52} Al _{0.48} As/*In _x Ga _{1-x} As	In _x Ga _{1-x} As
I. InP/In _x Ga _{1-x} As	In _x Ga _{1-x} As
I. p-InP	InP
2. Recess + In _x Ga _{1-x} As	In _x Ga _{1-x} As
I. InP	InP
2. Recess + In _{0.52} Al _{0.48} As	In _{0.52} Al _{0.48} As
3. Recess + In _x Ga _{1-x} As	In _{0.52} Al _{0.48} As In _x Ga _{1-x} As

Possible need for InP, In, Ga1, As and In0.52Al0.48As CMP processes

References:

(1) Patrick Ong, Liesbeth Witters, Niamh Waldron and L.H.A. Leunissen, ECS Trans. 2011 volume 34, issue 1, 647-652

How did We Identify the Mechanism in III/V (GaAs, InP) CMP

14 Etching rate (InP) 12 Etching rate (GaAs) Polishing rate (InP) 10 \rightarrow Polishing rate (GaAs) 8 A.U 6 4 2 0 Low High pН

Zeta Potential of III/V Substrates

Zetapotential with GaAs Wafer 40 20 0 8 6 7 9 10 Zetapotential ZP in mV 00 8 09 05 05 GaAs-01 - GaAs-02 - GaAs-03 Zetapotential with InP Wafer 50 0 -120 10 pН -50 Zetapotential ZP in mV -100 InP-01 -150 InP-02 -200 InP-03 -250 -300 -350 -400 pН

= BA

The Chemical Company

П

SE

III/V-InP Surface Analysis

XPS

III/V CMP Performance Improvement Passivation v.s Activation

A Balance of Polishing Rate and Surface Finish in III/V CMP

Surfacequality(visure check):

GaAs Surface Finish (White light interferometry)

Baseline: RMS>0.8nm

Add a(Gen1): RMS>0.8nm

Add b(Gen 2): RMS>0.8nm

Add c(Gen3): RMS<0.5nm

Add d(Gen3): RMS<0.5nm

BASF Additives Enable a Broad Range of Selectivity in III/V CMP

Gas Releasing Control in III/V CMP

^{15.05.2013,} CMP User Group, Albany

0.050

0.045

0.035

0.025

0.015 0.010 0.005

0.000

(mqq) 0.040

AsH_s 0.030

Max 0.020 🗆 - BASF The Chemical Company

Selectivity on Oxide Layer

PG3006

300mm Patterned Wafer Study: InGaAs STI with Planapur® G 3002

- Planarization achieved with about 110sec CMP
- Oxide loss < 20A in 110 sec polishing</p>

Defects on eharp Oixde

PG 3001 EHARP – 176 @0.15um

PG 3002 EHARP – 230 @0.15um

- Slurry formulation showed strong impact on defects performance on oxide substrates
- Correlation study ongoing: defects on oxide, defects on III/V

PG 3003 EHARP – 74 @0.15um

BASF has Strong Chemical Know-how in-house to Develop CMP Slurries

- Abrasives
- Polymers

Conclusions

- III/V materials polishing models are developed based on substrate analysis and polishing experiments
- BASF additives provide a broad window for selectivity and surface finish tuning in III/V CMP
- III/V patterned wafer (300mm) test confirmed high planarization, low erosion, dishing with BASF formulations
 - Methodology under development for more detailed defects study on III/V materials

BASF