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Possible Logic Technology Roadmap 

2nd Gen 
HKMG 
2009 

Si FinFET 
2012 

32nm 22nm 14nm 

SiGe pMOS; 
Si nMOS 
2014 

10nm 

(Si)Ge pMOS 
Si or Ge nMOS 

2016 

7nm 5nm 

Add III-V TFET 
    2022 

Intel 
 

Intel 
 
 

(Si)Ge pMOS; 
III-V nMOS 

2019  

Manufacturing Development 

Pathfinding 

3nm 

D. K. Mohata VLSI 2012 

- ??? 
2025 

S. Banerjee 2009 
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How To Address “Must Solve” Power Issue? 
Pareto Analysis of Power Issue 
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Gate Leakage 
HK/MG 

Sub Vt Leakage 
Junctions, N.-P., TFET 

20%

30%

10%

40%

 
  

  
  

Best Efficiency  Vdd~0.3V 

Today 

~1V #1:  Dynamic “leakage” 
Vdd Scaling (Vdd=0.3-0.6V) 

• Significance: Scaling Supply Voltage is Key to Address Power Issue 
• High mobility channel materials enable Vdd scaling w/o sacrificing performance 
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High-μ on Si Heterointegration challenges 

2) Compound Semiconductors - 
Polar on non-polar:  
Anti Phase domains and their Boundaries 
(APB) 
 

1) Lattice/thermal mismatch 
High mobility ↔ Large lattice 
parameter 
 
Lattice mismatch:  
InP/Si: 8% 
InP/Ge: 3.7% 
Mismatch stress relaxation leads to 
defects: dislocations, twins, SFs,... 
 
 

4% 8% 12% 20% 0% 
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Fin height 
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Si 

Buffer 

High-μ Fin Formation Options 

III-V Epi III-V Fin Etch Oxide CMP 
Fin Release 

HM Dep 
HDP Fill Top-Down Fin Approach 

Ge & III-V Replacement Fin Approach 

HVM’ability debatable, but good research technology to answer fundamental questions and 
develop modules 

Elegant integration, but epitaxy challenging. Is high quality ~10nm fin possible? 
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Si 
oxide 

Si 

Ge 

oxide oxide oxide 

Si 

78nm 

72nm 

78nm 

77nm 

• Significance: Quality Ge epi techniques may be needed for non-Si CMOS 
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Replacement Ge Fin 
Effective dislocation trapping demonstrated 



GaAs 

SiO2 

100 nm 

175 nm Offcut direction 

G
aA

s 

Si
O

2 65 nm 175 nm Offcut direction 

AR = 1.7 
 

AR = 3 

Replacement III-V Fin 
Selective GaAs on Si with AR~3 
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Si 

GaAs 

Si 

Si
O

2 

160 nm 

100 nm 

Ga
As

 
(111) 

[110] 

[001] 

[110] x 

Morphological 
features 

SEM 

TD  trapping  
indicated by red lines 

- Trapping of all threading dislocations 
- However, the ART structure promotes the formation of 

other structural defects (morphology and stacking faults) 

Replacement III-V Fin 
Effective dislocation trapping demonstrated 
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Ge & III-V Replacement Fin Approach 

HVM’ability debatable, but good research technology to answer fundamental questions and 
develop modules 

Elegant integration, but epitaxy challenging. Is high quality ~10nm fin possible? 
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Replacement Ge Fin CMP  
Ge CMP initial development 

• Ge is an ‘easy’ material to CMP, many slurries are effective. 
• Ge/oxide selectivity important for smooth and uniform post CMP morphology 

Remaining Ge 

CMP slurry 

Original test structure 

Slurry 2 Slurry 3 

Slurry 1 
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InGaAs  blanket wafer CMP 

• Planar InGaAs hetero-structure: initial CMP learning vehicle 
• Next slides will show the results of this test structure 

Si Sub 

GaAs Buffer 

Graded InAlAs 
Buffer 

InP 

InAlAs 

30 nm InGaAs 

Representative TEM Starting layer structure 

X-TEM Plan view TEM 
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Defectivity ~e9 cm-2
 
‘mechanical’ wafers for CMP study 



InGaAs CMP: polish rate and morphology 

• Slurry 1: slower, smoother 
• Slurry 2: faster, rougher 
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InAlAs 

InP 

InAlAs 

InGaAs 

Pre-CMP InGaAs Thickness – 300A 

Rq= 1.4 nm Rq= 4.8 nm 

Controllability and morphology critical for replacement fin application 



InGaAs CMP: Controlling native oxide 

Sample Slurry O2 area 

1 1 22 600 

2 1 23 300 

3 1 24 700 

4 1 23 100 

5 2 43 000 

6 2 31 800 

9 2 45 000 

10 2 39 000 

• Oxide formation controlled by slurry 1 
• Significance: surface roughness, stoichiometry and 

uniformity essential for successful RPL fin integration 
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InGaAs CMP: Etch rate as function of PH 

• Low pH increases oxide solubility and CMP rate. 
• AsH3 generation concern if pH too low 
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Working theory: 2 step mechanism  

InGaAs 

oxide 

InGaAs 

InGaAs 
oxide 

Starting surface 
Native oxide 

Step 1: Oxide removal 
pH determines oxide 
solubility 

Step 2: Re-oxidation 
Can be enhanced by 
oxidizer 
 



Importance of Low Thermal Budget  
InGaAs MOS stability 
 

5/15/2013 15 

Replacement Gate required at 7nm – POP and MG CMP challenges to continue 
SEMATECH VLSI-TSA 2011 



Coupon test structure using non-VLSI process flow:  
• Fundamental scalability of III-V materials 
• Module level learning 
5/15/2013 16 SEMATECH IEDM 2012 

Importance of Low Thermal Budget  
Short loop verification of gate-last approach  
 

Presenter
Presentation Notes
In order to compare device characteristics, we plotted the subthreshold and gate current characteristics for both Inverted and Normal HEMT. Normal HEMT data came from our group with a similar channel design, barrier thickness, gate length and side recess length value. The inverted HEMT shows comparable subthreshold characteristics. Remarkably, the inverted HEMT exhibits much lower value of off-state current and gate leakage current.



Low temperature gate-last process flow preserves gate-stack 
integrity - Replacement gate required at 7nm node 
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Fundamental Promise of III-V 
Gate last process enables SCE control to Lg=50 nm 
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In order to compare device characteristics, we plotted the subthreshold and gate current characteristics for both Inverted and Normal HEMT. Normal HEMT data came from our group with a similar channel design, barrier thickness, gate length and side recess length value. The inverted HEMT shows comparable subthreshold characteristics. Remarkably, the inverted HEMT exhibits much lower value of off-state current and gate leakage current.



• Excellent scalability was observed with ETB InAs MOSFET down to Lg = 50 nm. 
• 2X higher injection velocity vs. s-Si device at ½ VCC 

SEMATECH IEDM 2012 5/15/2013 18 

Fundamental Promise of III-V 
Benchmarking: Injection Velocity (Vinj) 
 



Summary 

• High mobility channel materials expected at 
10/7nm technology node. 

• Replacement fin, elegant integration, but epi and 
CMP challenges to overcome. 

• Initial Ge and III-V CMP results promising, more 
work to do…. 

• III-V gate-stack, thermal budget critical: gate last 
flow likely, CMP critical.   
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