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FEOL is an inflection point for CMP 

 We need a path forward for order of magnitude 

improvement in control in topography of all processes. 

 Shifting to wafer scale control rather than just die scale 

control requires a major change in consumables design. 

HKMG and FINFET for sub-32nm will require thickness 

control of <2% at every point on the wafer for proper 

transistor function. This is largely beyond current CMP 

process capability.  

 Increasing conflict between wafer throughput (drives high 

removal rates) vs. control (low removal rate preferred) 
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Changes in CMP processes needed to move ahead 

 OOM improvements in contact pressure regulation across 

the wafer over the process lifetime. 

 OOM improvements in control of hydrodynamics and 

liquid transport w/in the lubrication layer over the process 

lifetime 

 OOM improvements in control of interaction forces for 

control of rate and material damage. 

 OOM improvements in topography control 

 Changes in process kinetics to simplify the control 

requirements of the process, especially for CMP of 

heterogeneous surfaces 
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Poly CMP applications and challenges 

 FinFET poly CMP: planarization of poly-Si topography 

and stop at desired poly-Si thickness 

− Extremely high PE to correct very low topography 

− Uniform step height reduction and uniform poly-Si thickness across 

a range of feature densities 

− End point control or self-stopping behavior 

 HKMG, poly open process: planarization of polySi 

topography plus tunable selectivity to nitride and oxide 

 MEMS poly CMP, DRAM poly CMP3D-RCAT poly CMP 

requires planarization of poly-Si topography and stop on 

the underlying oxide or nitride layer with no erosion and 

minimal dishing. 

All processes will require global feature-independent 

erosion and topography control 
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New removal Mechanism for particle-free polySi 

 Use designed polymers to form a strong bridging 

interaction between the films being polished and the 

polishing pad. This allows atomic scale removal without 

mechanical force, with zero removal on any other material 

 E(-Si-Si-) < E(Bridging) < E(-Si-O-&-Si-N-) 
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Blanket wafer responses 
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Abrasive-free polySi: Conditioning and hydrodynamics 
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Pattern wafer response 
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Comparison of RL vs. conventional slurries on P1 
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Pattern Density Effect 
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Effect of inhibitor addition to RLP on poly-Si rates 
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Inhibitor-induced Non-prestonian behavior 
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Effect of inhibitor on trench response: low MW P2 
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Effect of P1 slurry on P2 slurry dishing: low MW P2 
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Inhibitor effects on P1 planarization 
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Effect of molecular weight on trench kinetics (250K ) 

 High MW best for planarization on P1, low MW best for 

trench control 
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Basis for molecular weight effects on dishing control 

 Asperity separation distance cannot exceed a critical 

value for maintenance of the bridging complex. 

 The critical separation distance decreases drastically with 

decreasing molecular weight. This forces rate shutdown in 

the trench. 
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Current work focus 

 Custom design of complexing agent and inhibitor structure 

 Developing PW baseline 

  PW screening for control of topography 

− Planarization of overburden and implementation of robust 

self-stopping behavior (FinFET and memory) 

− Control of post-clear topography (memory focused) 
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Conclusion 

 A novel removal mechanism for CMP of Si films has been developed 

which shows considerable promise for FEOL and memory 

applications. 

 The bridging complex removal mechanism is very flexible. It can be 

modified to control pattern wafer planarization and dishing kinetics 

through chemical design rather than by exploiting mechanical effects. 

The nature of the mechanism also yields a pronounced insensitivity to 

pattern density and linewidth effects, which we feel is characteristic of 

fully chemistry-dominated removal mechanisms. 

 The high purity, freedom from abrasives, lack of asperity wear make it 

attractive for FEOL application 

 We hope to present further progress on a full self-stopping polySi 

process at ICPT 2013.  
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