Cabot Microelectronics Corporation

Perfecting the Surfaces of Tomorrow™

Improved Embedded Alumina Defect Performance through a Multi Particle Slurry for Hard Disk Polishing

PC Selvaraj, Rujee Lorpitthaya, Denise Hunter, and Haresh Siriwardane

Cabot Microelectronics Hard Disk Drive Slurry Development Division – Singapore

15th September 2010

Presentation Outline

- Industry memory requirement trend
- Some problems due to embedded alumina defects
- Defect formation mechanism
- How to minimize embedded alumina defects on Ni-P surfaces ?
- Conclusions

©2010 Cabot Microelectronics Corporation CONFIDENTIAL

HDD Industry Technology Road map

Higher field densities are desired by HDD technology road map

©2010 Cabot Microelectronics Corporation

CONFIDENTIAL

Embedded Alumina Defect Challenges

- 1. Low S/N ratios
- 2. Obstruct slider motion above substrate surface
- 3. Distortion in magnetic field in defect region

©2010 Cabot Microelectronics Corporation

CONFIDENTIAL

Perfecting the Surfaces of Tomorrow**

Embedded Alumina Defect Formation Mechanism

- 1st step slurry in HDD substrate polishing is the only alumina source to cause embedded alumina defects
- Embedded alumina is seen either at post 2nd step defect review or at device failure
- Sharp edges of alumina gets embedded into Ni-P layer, leaving fractured particle(s) inside surface film
- Particles still resides in film after P2 polish
- Subsequent process steps magnifies the presence of the embedded particle
- Methods such as FIB, FESEM, and SEM EDX reveal the defect type to be Al_2O_3

©2010 Cabot Microelectronics Corporation CO

Perfecting the Surfaces of Tomorrow[™]

Irregular shape alumina in slurry

Multi Particle Slurry for Low Embedded Alumina

- 1. Large Alumina
- 2. Small Cabot Alumina
- 3. Colloidal Silica
- 4. Complexing agent
- 5. Oxidizer
- 6. Additive at Point of Use

©2010 Cabot Microelectronics Corporation CONFIDENTIAL

Alumina-Silica Interaction Mechanism

• Electrostatic attraction between alumina and silica particles leads silica to coat around alumina

©2010 Cabot Microelectronics Corporation

CONFIDENTIAL

Perfecting the Surfaces of Tomorrow

Solution for Embedded Alumina

US Patent 6.896,591 B2

Irregular shape alumina 0.1um – 0.9um

Perfecting the Surfaces of Tomorrow**

Regular shape

0.05um – 0.4um

alumina

Candela Defect Maps after 2nd Step Polish

• Pure alumina 1st step slurry polish disks give higher particles on disk surface. Defects maps were taken after P2 polish process.

Perfecting the Surfaces of Tomorrow

Conclusions

 Due to opposite surface charges on alumina and silica, silica particles get coated around alumina in slurry media

 Silica particle coating around alumina makes the substrate - particle interaction less sever to prevent embedded alumina defects

©2010 Cabot Microelectronics Corporation CONFIDENTIAL

Acknowledgements

• We thank Atenafu Chaneyalew, and Tao Sun, for their original invention

©2010 Cabot Microelectronics Corporation CONFIDENTIAL

