BASF Soft Particles for Metal CMP

<u>Vijay Raman¹</u> <u>Claus Poppe²</u> Bastian Noller³ Michael Lauter² Yuzhuo Li² BASF SE, Ludwigshafen, Germany

¹ Global Polymer Research – Polymer Colloids
 ² Global Business Unit Electronic Materials
 ³ Competence Center Formulation Technologies

The Chemical Company

BASF SE, Ludwigshafen, Germany

BASF – The Chemical Company The world's leading chemical company

- Chemistry is about every aspect of life.
- We are connected to deliver intelligent and sustainable solutions.
- Sales 2009: €50,693 mill.
- EBIT 2009: €3,677 mill.
- Employees (December 31, 2009): 104,779
- About 1,300 new patents filed
- 6 Verbund sites and about 380 production sites

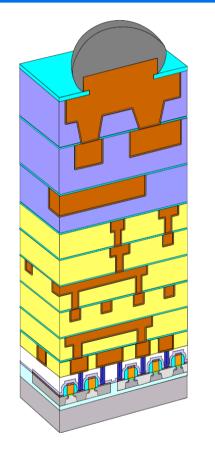
Electronic Materials by BASF

Worldwide Presence

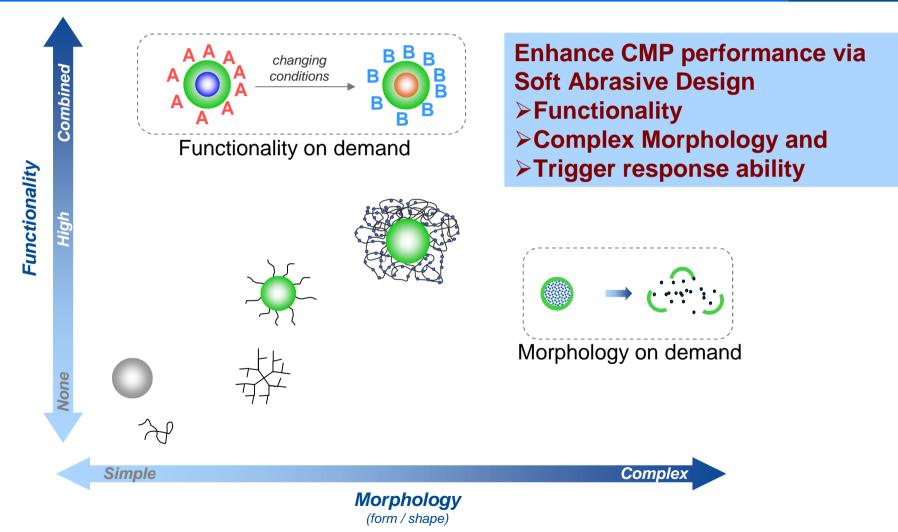
Electronic Materials by BASF

R&D to meet customer needs

- State-of-the-art R&D and application facilities in Europe and Asia
- Presently approx. 100 employees dedicated to the development activities in Electronic Materials
- Part of approx. 9,300 employees in BASF's R&D and technology network
- Collaboration: commercial, academic partners and tool manufacturers
- Some of our R&D projects:
 - Advanced cleaning formulations
 - Copper electroplating
 - New CMP slurries



Overview of BASF CMP Activities

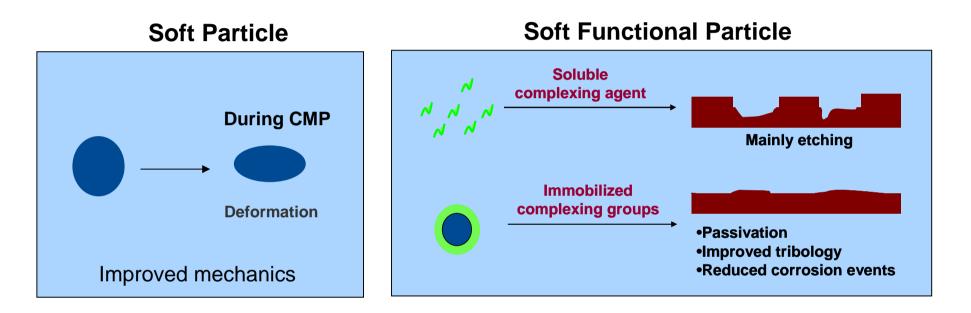


CMP Slurries

- Cu CMP for 3D TSV
 - Front and back side
- Cu CMP for Interconnect
- Barrier CMP for Interconnect
- Interlayer dielectric (ILD)
- Shallow trench isolation (STI)
 - •Nitride and poly Si stopping
- High K metal Gate
 Poly Si opening

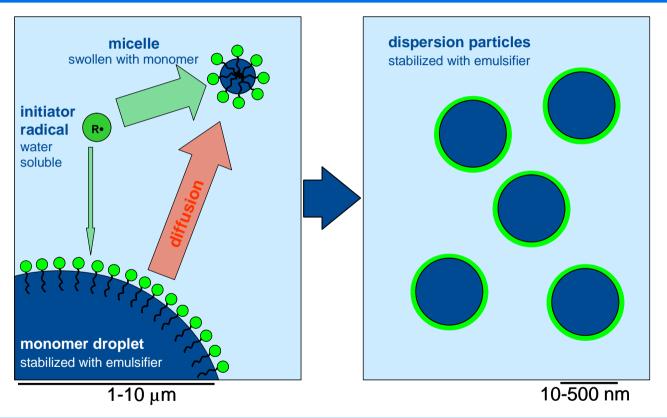
BASF's intelligent chemistry for CMP: *Functional and Adaptive Particles for Dynamic Conditions*

Vijay Raman and Claus Poppe, BASF SE, Semicon West 2010


🗆 = BASF

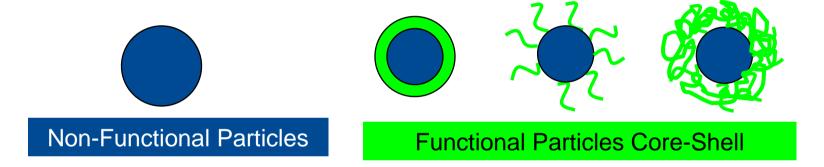
New Soft Abrasives for CMP

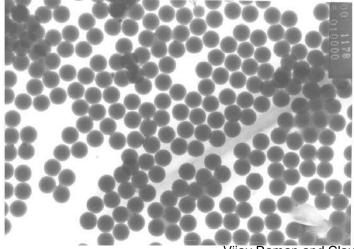
Silica Particle **Functional Polymer Particle BASF Adaptive Organic Particle** Stress-free Stress-free Stress-free **Elastic** core Compressed during Compressed during Compressed during CMP CMP CMP Wafer **Deformation** Wafer Wafer Dissociation No Deformation * Pad Pad Pad

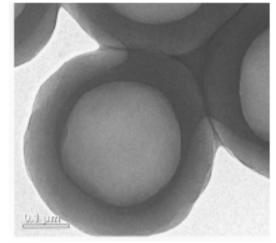

Concept: Soft Functional Polymer Particles in CMP

The Chemical Company

Improved chemical/mechanical balance in CMP

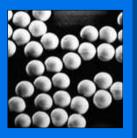

Designing Polymer Particles via Emulsion Polymerization

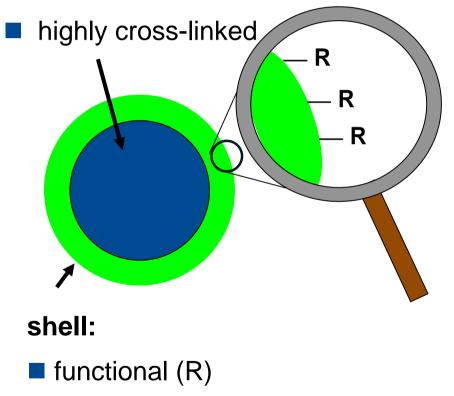



- Current applications: Adhesives, Paints, Paper and Construction
- BASF capacity: > 1 million tons per year
- > New market opportunity \rightarrow CMP

BASF Polymerization Technologies: Versatile Functionalities and Morphologies

new functionalized polymer particles with different morphologies

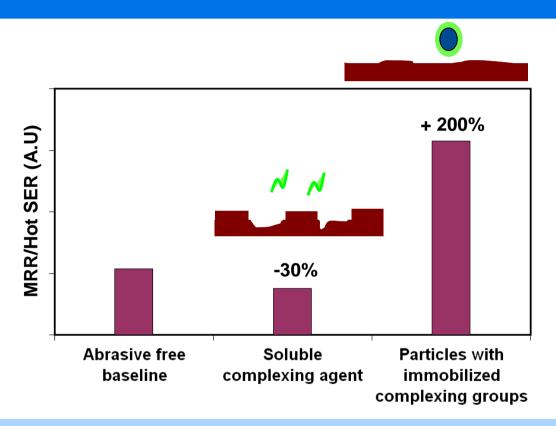



Vijay Raman and Claus Poppe, BASF SE, Semicon West 2010

Overview: Functional Polymer Particles for CMP

The Chemical Company

core:



Portfolio / Properties

particle size:10nm to 500nmTg:-30°C to 180°Ccrosslinking:up to 30%functionalityR): cationic, anionic and
non-ionicsolids:up to 60%surfactant:low as 0,5 %stability:thermal stability >350°Ccoagulum:< 10 ppm possible</td>very low VOC < 10 ppm</th>

Proof of Concept: Soft Functional Polymer Particles in CMP

BASF The Chemical Company

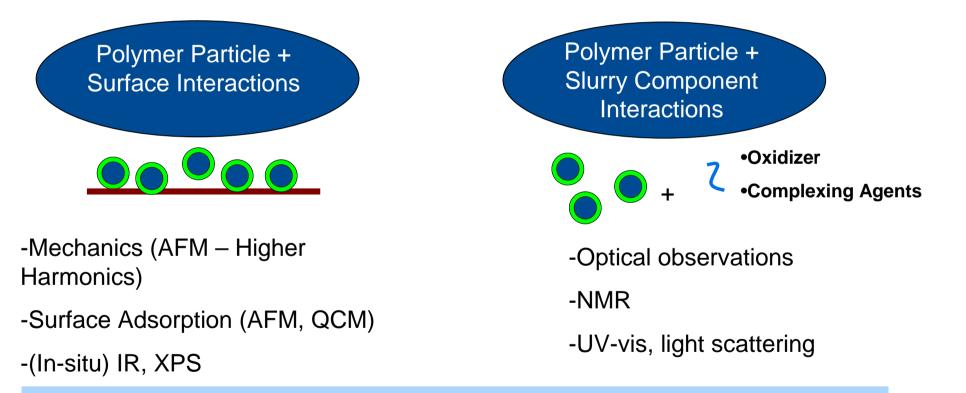
- >Lower chemical etching (SER)
- >Increased mechanical contribution (MRR)
- Improved Chemical/Mechanical balance

Tunable CMP Performance via Surface Functionality

500% **Tunable CMP MRR/Hot SER (A.U)** performance -30% Type IV No Particle Functional Non-Type II Type III Non-Slurry Functional Particle: Type I Functional Particle Silica

CMP performance can be tuned via surface functionality

- >Functional particle significantly improves the chemical-mechanical balance
- > Performance significantly better than non-functionalized silica


BASE

The Chemical Company

CMP Fundamental Investigations: Interfacial Phenomena

The Chemical Company

Polymer Particle- Surface- Slurry Component Interactions


To develop a complete understanding of CMP interactions and mechanisms

Interactions of Functional Polymer Particles with Slurry Components

The Chemical Company

Reference

5mM Cu(NO3)2

NMR T₂ measurements

Relaxivity of water protons in presence of paramagnetic species

$$\frac{1}{T_i} = \frac{1}{T_{i,0}} + \rho_{i,para} c_{para} \checkmark$$

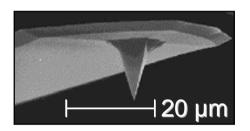
Relaxivity, depends on paramagnetic species, solvent, magnetic field

Functionalized Particles a Versatile Component: Offers a Range of Interactions in Slurry

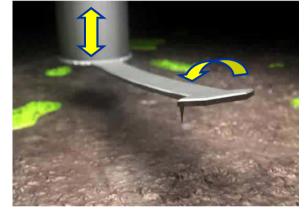
0,008 0,007 0,006 Cu²⁺-glycine 1:2-complex 0,005 1/T2 [1/ms] Cu²⁺-triazole 0,004 1:2-complex 0,003 0,002 0,001 0 5 mM Cu²⁺ 5 mM Cu²⁺ 5 mM Cu²⁺ Water 5 mM Cu²⁺ 1% functionalized 10 mM glycine 10 mM 1,2,4-

Vijay Raman and Claus Poppe, BASF SE, Semicon West 2010

triazole


abrasive particles

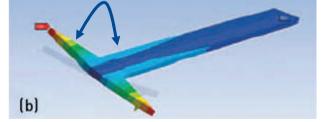
🗆 = BASF


Higher Harmonic AFM: New Insights Into Mechanical Property of Nanoparticles Adsorbed on Surfaces

The Chemical Company

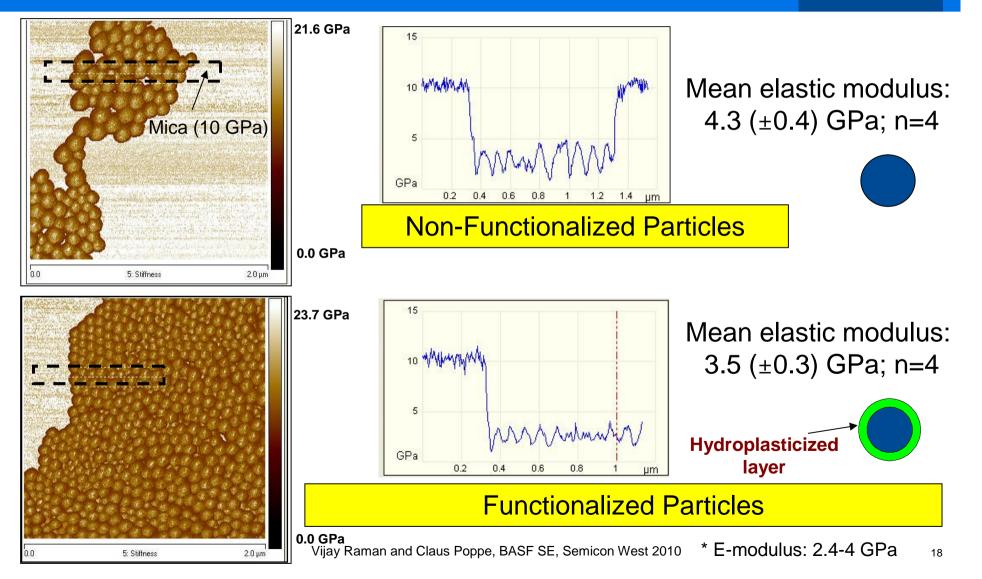
Normal AFM Cantilever

Mechanics possible only on flat surfaces / particles immobilized on tips Higher Harmonics: Coupling the normal force on the tip into a torsional motion of the cantilever


Mechanics on individual particles adsorbed on surfaces – CMP conditions

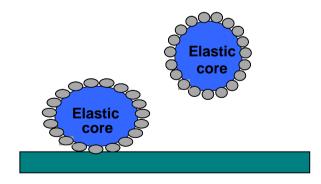
torsional deflection

AFM & Nanomechanics Lab – Dr. Sugiharto (GKP/O)

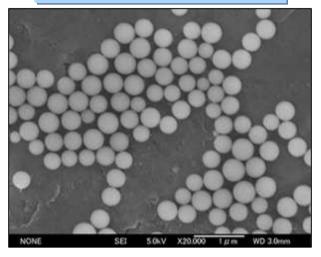


O. Sahin et al., Nature Nanotechnology (2007) 2: 507 - 514

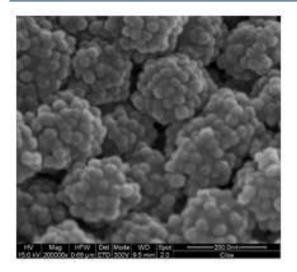
Vijay Raman and Claus Poppe, BASF SE, Semicon West 2010


Higher Harmonic AFM: Mechanics at CMP conditions

The <u>C</u>hemical Company

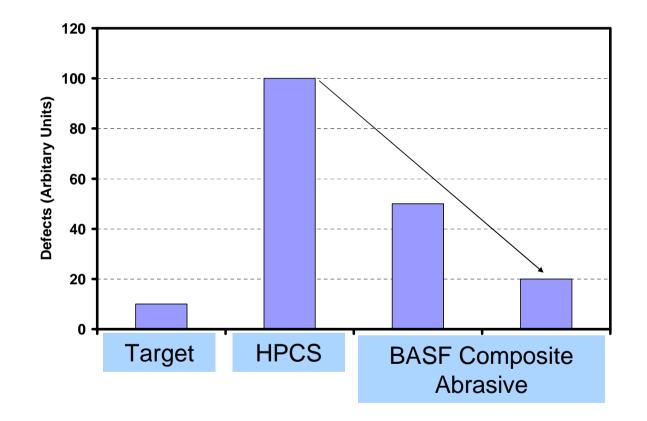

Composite Abrasive

Conventional High Purity Colloidal Silica (HPCS) vs. BASF High Purity Composite Abrasive (HPCA)


The Chemical Company

Typical Colloidal Silica

- Conventional Synthesis via TEOS or ion exchange
- High cost due to limited number of suppliers
- High purity
- 30-100 nm available
- Relatively hard
- Non-compressible


BASF Composite Abrasive

- Well controlled polymerization process: BASF IP
- Cost effective: HVM for other applications
- High purity possible
- 30 100 nm available
- Hardness and morphology tunable
- Compressible => low defect?

Conventional High Purity Colloidal Silica vs. **BASF Composite Abrasive**

The Chemical Company

>Excellent Defectivity Levels Achieved on Metal Layers

Conclusions

- BASF Soft Abrasive Design to Improve CMP performance
- **Functional Polymer Particles** a new component for Cu CMP slurry design
 - with improved chemical-mechanical balance
 - tunable CMP performance via surface functionality

Composite abrasive

- Industrially feasible composite structures
- Excellent defectivity with balanced removal rate
- Fundamental Mechanistic Understanding
 - AFM higher harmonics to understand mechanics of particles under CMP conditions
 - Particle-slurry component interactions functional abrasives offer a range of versatile interactions for slurry design (NMR)

Acknowledgments

BASF SE (CAE, Germany)

- Mr. Roland Lange
- Mrs. Elisabeth Selzer
- Mr. Kenneth Rushing

BASF (CAE, Asia)

- Mr. Daniel Shen
- Mr. William Chiu

STLN, Clarkson University

- Mr. Yongqing Lan
- Dr. Changxue Wang

BASF SE (Polymer Research, Germany)

- Dr. Jörg Nieberle
- Dr. Maxim Peretolchin
- Dr. Monika Haberecht
- Dr. Hans-Joachim Haehnle
- Dr. Markus Brym
- Dr. Alexsandro Berger
- Dr. Bas Lohmeijer
- Dr. Nikkolaus Nestle
- Dr. Brands, Dr. Gubaydullin and Dr. Zacharias
- Mr. Sciandrone, Mr. Hyunh, Mrs. Dammert, Mrs. Merz, Mr. Dyga
- Mrs. Diana Franz and Mrs. Bettina Drescher