# Teaching Old CMP Equipment A Few New Tricks



Robert L. Rhoades, Ph.D. CMPUG Spring Meeting April 28, 2010







Introduction

**Tricks for Process Improvements** 

**Tricks for Increasing Efficiency or Uptime** 

**Tricks for Reducing Cost** 

Summary







- A trademark of the semiconductor industry is relentless drive toward better, faster, & cheaper everything
- CMP has been around for >15 years in HVM and is now considered a mainstream process
  - Most of the first generation equipment is still on line even if now focused on different types of devices than advanced CMOS
  - Cost and performance improvements are constantly pursued
- As new materials are integrated, CMP also has to be adapted and redeveloped to meet changing demands





- Older generation pad conditioning hardware is prone to many of the following:
  - Very tricky alignments
  - Delayed response time due to load sensor and feedback loop integration time
  - Process drift due to inconsistent applied force
  - Overconditioning is the "norm" to ensure adequate force at all times
  - Parts obsolescence if/when components do fail



### **SteadySweep**



#### **Conceptual Design Phase**

#### Actual Field SteadySweep Retrofit





### **SteadySweep**





< Pressure control rather than load cell and feedback

> Swing arm panel in rear cabinet



< Simple controls below deck and mostly built from std components

> Sealed exterior
for easy cleaning







### Side by Side Comparison



472 with APP-1000™



372M with SteadySweep™



- Improved Serviceability Provides easy access to platen motors, gear boxes, etc.
- Safety Features SteadySweep<sup>™</sup> is fully interlocked with polisher safety features
- Simple Controls PLC controller with ladder logic programming to monitor and activate SteadySweep<sup>™</sup> by using the digital I/O signals of the polisher

**entrepix** *Our Expertise, Our Services, Your Success* 

### **Multiple Disks**



SteadySweep™ using most major brands of conditioning disks in back-to-back trial.

All tests performed on the <u>SAME</u> IC1000 pad.

Expt conditions: 4 Ibs applied force 15 min breakin 10 min filler wafers 3 rate wafers Repeat for next disk

entrepix

Our Expertise,

Our Services, Your Success



### **Characterization**



Multiple runs on same pad in a random sequence

Consistent rate and uniformity

Very slight drop in rate at applied forces of 1 lb and 0.5 lb.

Pad stack: IC1000 on Suba IV Slurry: Cabot SS-12 DF = 7psi, Platen speed = 40 rpm SteadySweep™ in-situ conditioning

entrepix

Our Expertise,

Our Services, Your Success



### Marathon



APP1000™: at 8 Ibs conditioning down force



**Result:** Slight Removal Rate decay through four (4) hr run.

SteadySweep™: at 2 lbs conditioning down force



**Result:** Near zero Removal Rate decay and improved uniformity through four (4) hr run.

<u>Standard Oxide Process</u>: Pad stack – IC1000on Suba IV; Slurry – Cabot SS-12; Polish DF = 7 psi; Platen speed = 40 rpm *NOTE: Same polish head and conditioning disk was used or both sets of data shown above* 





| Force               | 0.5 to 20 pounds                                                                                         |
|---------------------|----------------------------------------------------------------------------------------------------------|
| Rotational Speed    | 0 to 200 rpm                                                                                             |
| Modes of operation  | <ol> <li>Breakin (new pad)</li> <li>In-situ (during polish)</li> <li>Ex-situ (between wafers)</li> </ol> |
| End effector size   | 2 inch through 7 inch diameter<br>(custom sizes upon request)                                            |
| Platforms supported | IPEC 372, 372M, 472<br>Strasbaugh 6DS-SP, 6EC, etc.<br>Virtually any rotational polisher                 |

### **OnTrak Systems**



#### **Series II Classic or CE**



#### Synergy



#### Synergy Integra







### **OnTrak brush module**



- Double-sided scrubbing with PVA brushes is the most commonly used approach for post-CMP cleaning
- Thousands of installed systems worldwide (including OnTrak, DNS, integrated cleaners on DIDO tools, etc.)
- All systems include wafer sensors for feedback and control





### **Clear Wafer Issues**



- A growing number of applications require processing of transparent or low opacity substrates, such as glass, sapphire, quartz, SiC, etc.
- Typical configuration uses through beam sensing to detect the presence or passage of opaque substrates.
- Clear substrates are not detected by through beam sensors nor most standard capacitive sensors. In dry environments, reflective sensors are a good solution.
- Post-CMP cleaning environment involves liquid sprays, highly polished metals, wet plastics, and other reflective surfaces which generate "noise" to the typical reflective sensor.
- Attempts to tune a standard reflective sensor to detect only the substrate and not the liquid overspray or materials were ineffective.





### > New sensor types employed for clear wafers

#### 1) Sensor Type 1

- Allows detection of a surface at a specific point (+\-.02").
- Mounted near to the product surface (1-2" preferred).
- Uses a digital amplifier to suppress "noise" generated by background surfaces or water droplets.

### 2) Sensor Type 2

- Enables longer distance sensing
- Amplifies attenuation in received light even as it passes through a clear surface.



### **Sensor Locations**





#### **Multiple Sensors:**

Load station Brush box #1 Brush box #2 Transfer carriage Spin station Unload station





Net Result: Enables clear wafer processing on OnTrak double sided wafer cleaning tools







- Pad rinse occurs at end of polish or between wafers
- Spray bar helps remove agglomerates, pad fragments, and other surface debris → especially from grooves
- Lowers defectivity
- Improves yield with minimal investment
- Best performance achieved with atomizer design using both DIW and N2 to create high velocity spray

### **Spray Bar Photos**





#### Spray bar installed on Auriga polisher (above)

# Spray bar installed on IPEC polisher (below)





### **Defect Improvement**





# Statistically validated reduction in defect levels with addition of spray bar



#### **Polymer Pressure Canister**



- In many facilities, cleaning chemistry is fed to the scrubbers from stainless steel pressure canisters
- Most canisters are treated to reduce leaching of metals, but this can break down or be destroyed by some chemicals
- Preferred solution is a canister of all polymer construction

Our Expertise,

Our Services, Your Success

entrepix







### **Pad Applicator**



- All pads have PSA layer to adhere them to the polisher platen
- Air bubbles under the PSA can cause defects or nonuniformity or wafer slipout (worst case)
- Simple solution involves training and using a tool to apply uniform pressure

### **Pad Applicator**









- Changing pads on IPEC 472 polishers can be awkward and difficult for some people
- Ergonomics were not a primary factor in original design
  - Requires leaning across the APP-1000
  - Physical strength required depends on pad PSA
- Custom designed solution involves a cable, air cylinder, and unique pressure clamp



### **AMAT Arm Shroud**



- Cover or shroud on bottom of arm is often splashed with slurry
- Builds up over time and dried slurry agglomerates can fall back onto pad
- Frequent cleaning can actually roughen surface and enhance buildup
- Improved approach is to coat with smooth finish







### **AMAT Arm Shroud**





Reducing buildup on surface above the pad reduces risk of fall-on particles



### **Slurry Level Alarm**



- Most production facilities deliver slurry through pressurized distribution systems ... development facilities often do not
- An empty bucket or unfilled feed line causes at least an excursion and at worst a broken wafer
- Solution = Sensors and simple alarm tower









### Idle Water Savings (IPEC polishers)



- In idle mode, most polishers still consume substantial DI water
- On IPEC tools, unload tub overflow is a major contributor
- Auxiliary timer and valve enables control of overflow when tool is in idle mode
  - n tool is in idle mode



## Tub dump/refill is not affected Over 30% reduction in monthly DI water consumption at the beta facility !!



### Idle Water Savings (OnTrak scrubbers)



- In idle mode, OnTrak cleaners consume substantial DI water
- Software allows only minimal control over brush rinse and turning down flow meters can negatively impact process
- Auxiliary timer and valve enables control in idle mode and is deactivated when running process



# Over 50% reduction in monthly DI water consumption at the beta facility !!

• Data shows at least 30 minutes between rinse cycles is safe

entrepix Our Expertise, Our Services, Your Success

### **CMP Applications**





As CMP applications continue to multiply ... optimized consumables, processes and methods must be developed with lowest possible risk and cost



### **Topics**



- SteadySweep
- Clear Wafer Sensors
- Spray Bars
- Polymer Pressure Tanks
- Pad Applicator
- Pad Puller
- AMAT Lower Arm Shroud
- Slurry Indicator Tower
- Water Saving Controllers

- Upgrades & modifications should be tailored to the needs of each facility
- Unexpectedly large benefits can come from some very low cost items
- The best source of what needs improving is often from the people running the tools every day



### **Acknowledgements**



- Many thanks to the following people:
  - Paul Lenkersdorfer, Donna Grannis and Terry Pfau (process team)
  - Roy McCoy, Josh Beckenhauer and the rest of the equipment team
  - Customers who gave permission to use images and data
  - Bill Easter of SEMPlastics for spray bar and arm shroud information
- For additional information, please contact:

#### **Robert L. Rhoades**

Entrepix, Inc. Chief Technology Officer +1.602.426.8668 rrhoades@entrepix.com

