CMP Process Monitoring and System Interoperability using Acoustic Emission

Joshua Chien, Moneer Helu, David Dornfeld, DE Lee

> SEMICON West CPMUG July 15, 2009

1/20 • 8/11/09

Outline

Berkeley Environment Market Ma

Acoustic Emission (AE)

- Propagation of elastic waves generated by:
 - Solid-solid elastic interaction
 - Plastic deformation
 - Dislocation movement
 - Elastic energy release due to creation of new surfaces
- Ultrasonic frequency range, typically ~20 - 2000 kHz
- Advantages:
 - In-situ non-destructive / non-evasive
 - Unaffected by many noise/error sources
- Disadvantages:
 - Relatively expensive
 - <u>Difficult to integrate</u>

Energy of AE signal ∼ hardness → More energy needed to initiate material removal in harder materials

Signal/noise characteristics and sources of AE signal at different lengthscales (Dornfeld & Lee 2008)

3/20 • 8/11/09

Sources of AE in CMP

- Dominated by sources at pad asperity/wafer interface
 - Abrasive/wafer interaction (primary)
 - Pad asperity/wafer interaction
- Macroscale sources:
 - Friction between two surfaces (wafer/pad/retaining ring)
- Potential sources as yet unknown:
 - Solid/fluid interaction
 - Internal fluid turbulence

Very sensitive indicator of degree and nature of contact between surfaces in CMP

impingement)

• Endpoint detection (EPD)

AE RMS endpoint detection for STI CMP (left) and Cu damascene CMP (right) (Lee, et al. 2006)

• Microscratch detection

AE RMS signal for typical oxide CMP process with (a) standard slurry, and (b) slurry with fine Al₂O₃ particles (Tang, et al. 1998)

AE RMS intensity mapping for variations in slurry type for Cu CMP (Lee, et al. 2005)

Endpoint Detection Using AE

Fast Fourier Transform (FFT) Analysis

10/20 • 8/11/09

In-situ Fault Detection

Scratch & Defect Detection (SDD)

SDD AE Signal Domain

13/20 • 8/11/09

SDD – Signal Analysis

- How to extract Scratch component from the AE signal?
- Possible Solution #1: model AE Scratch signal
 - Ex. Green's Functions transfer tensor (i.e. mapping) of a medium from an AE impulse at point x_1 and time t_1 to the sensor at point x_0 and time t_0 .
 - However, difficult to successfully model! → ideally need 3-D model, account for multicomponent impulses and reverberated (i.e. echoed) signals
- Possible Solution #2: empirically characterize AE signal
 - Characterize for different film combinations: ex. Cu+Ta/TaN+Ox+Si, Ta/TaN+Ox+Si, Ox+Si, Si \rightarrow use <u>superposition</u>
 - Signal processing: energy-time-frequency (STFT, Wavelet, HHT)
 - Looking at energy alone is not sufficient!

SDD – Test Setup

SDD – Test Setup

Single Scratch & Indentation

•Linear Velocity V \approx 1.1m/s •Feed Rate $f \approx 50 \mu m/s$ •Scribe: 15µm Diamond tip radius •Gain: 99dB, 50kHz HP-filter •Sampling: 2.5Ms/s •AE Sensor spring loaded with ball-bearing point contact; industrial grease for improved contact Scratch along <100> plane

Test samples (4"):

- 1. Bare Si wafer
- 2. Oxide wafer
- 3. Cu on Ox wafer

SDD – Indentation Results

Short Time Fourier Transform (STFT) Spectrum

SDD – Indentation Results

SDD – Indentation Results

4

Time (µs)

SDD – Polish Results

- •Polish 1µm LPCVD wafer 50nm Alumina, 1.5% Wt
- •DF = 320N (~5.8psi), V_{platen} = 60RPM
- •High-pass Filter: 75kHz
- •Sample Rate: 1Ms/s
- •Signal trigger @ 20mV

Foreign particle embedded in oxide!

Real-Time Implementation

- Integration of EPD and SDD
 - Same signal can be used for Endpoint and SDD
- Maximum computing delay time dictated by sampling rate, $fs, \rightarrow t_{delay} = 1/fs$
 - EPD: *fs* typically 50-100Hz \rightarrow t_{delay} = 10 20ms
 - SDD: fs, ranges 1-3MHz \rightarrow t_{delay} = 0.33 1µs
- Hard wire system not practical
 - Need wireless setup
 - "smooth" and shielded track setup
- Ideally computations done within sensor housing, "smart sensor"
 - Amplification, filtering, energy/time/frequency analysis performed locally
 - Output data simply a trigger \rightarrow scratch yes/no

System Interoperability

- Process monitoring is vital to cut cost and increase quality
 - Expensive
 - Time consuming
- Standardization needed to decrease costs
 - Open standards required
- Example \rightarrow MTConnect
 - Open standard for mfg
 - Rapidly adopted in machiningbased mechanical manufacturing sector

MTConnect architecture (courtesy of Armando Fox and William Sorbel)

MTConnect Integration in CMP

23/20 • 8/11/09

Summary of AE Research

- AE has been shown as viable technique for CMP Process Monitoring
 - EPD, Slurry/Pad Condition Monitoring, Scratch & Defect Detection
- EPD via AE shows improvement over traditional friction based methods
 - Lower COO, higher throughput
- Potential for reliable and consistent Scratch & Defect Detection
 - Use energy-time-frequency characteristics to capture the non-linear behavior
 - Help improve yield
 - Addition testing still needed to determine consistency of results
- MTConnect enables process monitoring by easily integrating various disparate elements to allow for an effective means to gather relevant information bit-by-bit from sampled data

Thank You

Questions?

About this presentation: jmchien@berkeley.edu

More about MTConnect: <u>athulan@berkeley.edu</u>, mhelu@berkeley.edu

Please visit our lab website: http://lmas.berkeley.edu/

