

# MIID: Preventing Contaminating Cross Connections in Semiconductor Process Tools

A presentation to the CMP Users Group

Peter M. Pozniak, Malema Sensors

May 6, 2009



#### **Chemical Cross Connections**

- Bulk pressurized delivery systems create a need to cross connect the DI Water system with various chemical delivery systems.
- Typical arrangements provide only single containment
- Resulting in the potential cross contamination of these interconnected systems.



Typical Cross Connection arrangement



#### A better solution



 Sometimes we'll add check valves to mitigate the potential – This solution isn't allowed in potable water systems because of its unreliability.



#### **Simplest form of Backflow Prevention**



- Simple, reliable & inexpensive
- It's how your sink & dishwasher avoid cross connection
- Approved fro use in Potable water systems.



#### **Common Products for Potable Water Systems**



Pressure Backflow Preventer Hose Bib Backflow Preventer



Irrigation
Backflow
Preventers







#### MIID IP

- The MIID product functions as a backflow preventer in cross connected high purity, critical liquids applications
- Markets serviced include:
  - Semiconductor manufacturing
  - Biotech
  - Pharmaceutical
  - Nanotech



#### **Features**

- Backflow prevention utilizing the "Double Block & Bleed" method
- Malema proprietary, ultra low level, by-pass leak detection



#### Classic Double Block & Bleed

Vent Active (Open) or protective mode





#### Classic Double Block & Bleed

Vent Inactive (Closed) or dispense mode





# **Typical DI Water Loop**

- DI Water Loops like this exist in most every wafer fab
- Under "normal" circumstances they work dependably





# **Typical Tool Connections**

• A major use of DI Water in any process tool is for the safe flushing and dilution of chemical piping systems during maintenance operations.





# DI Water & Slurry Loops

- If either pump shuts down
- The fab level pressure drops
- Gravity continues
   working on the
   contained liquid and
   the pressure not only
   drops but can generate
   significant vacuum at
   the POU valve
   manifold.





#### How does the MIID address this problem?

- The (MIID) eliminates these problems.
- The design of the MIID prevents back siphonage even if a valve or valves in the Cross Connect manifold leak(s).
- The MIID incorporates a Malema leak sensor that warns of leaking valves before a back siphonage event occurs and before cross contamination results.



# MIID standing guard

- MIID acts to prevent cross contamination from occurring
- A Malema leak sensor provides a warning prior to a backflow event



Sub-Fab Level



#### Malema Double Block & Bleed

**Vent Active (Open) or protective mode** 





#### Malema Double Block & Bleed

Vent Inactive (Closed) or dispense mode





# **Monitoring?**



 The MIID incorporates a Malema leak sensor warning of leaking valves before a back siphonage event occurs and before cross contamination results.



# **MIID Operation**



One channel of a typical MIID module

- Three(3) pneumatic operated valves comprise one channel of a MIID module.
- In the normal, inactive or protective position the connection between the bulk supply and the cross connect point is broken by connection to the drain.



# **MIID Operation**



One channel of a typical MIID module

- When chemical is required by the process:
- Valves1a & 1b OPEN while Valve 1c CLOSES
- At the end of a dispense cycle the valves return to their normal positions breaking any potential back siphon path by connecting the outlet of the supply valve to the drain line.



# **MIID Operation**



One channel of a typical MIID module.

- Any developing back siphon is broken by connection to the vent / drain line
- Preventing a cross contamination event.
- The vent / drain line is monitored by a leak sensor providing an early warning of leaking valves.



# Malema Interconnect Interlock Device Simplified Description





#### **Test & Validation**

- During simulations in Malema's Lab each valve in the MIID module was equipped with a known leaking valve poppet.
- Several combinations of leaking and non-leaking valves were tested
- No cross contaminations occurred
- All valves were replaced (simultaneously) with known leaking poppets
- No cross contaminations occurred



#### **Modular MIID Backflow Preventer**







US Patents Pending,





25

11-May-09 US Patents Pending,