Facilities Recommendations: Liquid Supply Systems

Some Recommendations from Sub Fab Experiences

Jeff Wilmer, Brian Orzechowski, Zeke Pietsch

09/10/08 NCCAVS USER GROUP
Contents

• Review/Primer
• Process Planning
 – System Design Requirements
 – Waste Streams
• Component Specifics
 – Critical Items to Note
 – Peripherals
• Maintenance Programs
Overview

• Review and recommend some upfront questions
 – Topics to consider for any system investment
 – Areas to focus on when designing in a new capital purchase
 • Recommendations to layout
 • Scale of the system
 • Surrounding connections
Slurry Review

• Three major ingredient types
 – Silica
 • Shear sensitive
 – Particle growth in certain operational circumstances
 • Environment considerations
 – Low pH: Dried aggregates (cement-like)
 – High pH: Soft aggregates
 • Most prone to require filtration
 – Drum
 – Blend
 – Point of Use
Slurry Review

• Three major ingredient types
 – Alumina
 • Sediment potential
 – Long term operation can cause serious line clogging
 – Poor agitation in tank leads to varied removal rates
 • Environment considerations
 – Soft aggregates
 – Ceria
 • Sediment potential (some cases)
 – Long term operation can cause serious line clogging
 – Poor agitation in tank and drum/tote leads to varied removal rates
 • Environment considerations
 – Soft aggregates
Process Planning

• WHEN to Consider:
 – High use production scenarios
 • Multiple tools
 • High throughput of product
 – Custom recipes
 • Tight tolerances of a blend
 • Potlife issues with tertiary chemicals
 – Removal of bottlenecks
 • Drum/tote
 • Labor
Process Planning

• **WHAT to Consider:**
 – **GROWTH:**
 • Will this process grow in production scale?
 – Sizing global systems
 » Piping
 » Pump Engine
 » Day Tank
 • Will there be more tools in the near future?
 – Sizing blending make-up rates
 » Blend tank
 » Flow meters or scales
 • Are there dedicated support systems?
 – Additional Blend chemicals
 – DI, N2, etc
 – Waste handling facilities
Process Planning

• WHAT to Consider:
 – RECIPE:
 • How many chemicals will be used?
 • Delivery to systems?
 • How critical are upper/lower control limits?
 • Adjustments to recipe?
 – Instrumentation
 • Will the batch require a pass/fail prior to delivery?
 – Affects make up rates and production
 • Will there be a need to control process functions?
 – Critical versus process warnings
Process Planning

• WHERE to Consider:
 – Layout:
 • Where to locate with respect to production
 – Minimize power requirements for pump engine
 – Minimize global loop lengths and rises
 » Reduce slurry agglomeration
 » Reduce volume of unused product
 – Avoid serpentine loops
 » Slurries with sedimentation issues
 • Environmental surroundings
 – Minimize temperature fluctuations between system placement with respect to production tools
Process Planning

- Best
 - Tools directly below
 - Less energy required by pump
 - Less long term pressure associated wear
 - Imparts the least amount of stress to the chemical and components
 - Requires pressure regulation at VMB
Process Planning

• Better
 – Tools and system on same level
 • Good for long loops
 – Uses more power than previous application, but does not stress pump
Process Planning

- Good (but could get worse)
 - Systems below tools
 - Standard ideology for...ever
 - Changes that impart more stress to pump engine
 - Addition of filtration
 - Additional tools
 - Longer loops
 - More VMB additions
 - Changes to input pressures
 - May require increase in pump engine size
 - Requires the most power to dispense chemical to processes
Waste Streams

• Usually not well planned
 – Typically viewed in same manner as normal waste water streams
 • Slurry is sensitive to dry air conditions
 • Eddies tend to be nucleation points for buildup to occur

• Typical to have cabinet and process drains tied to the same waste stream
 – Keep cabinet drains to 1” minimum opening
 – Consider hydraulic head of Process
 • Avoid back flow
 – Have your engineer certify calculations
 • Keep slopes at ¼ to ½ inches per foot ALWAYS!
Waste Streams

- Small upfront investment can avoid the costly interruptions down the road
 - Keep it WET
 - High flow, timed auto-flush with industrial water
 - OR, Dedicated stream, 100 ml or more, at each waste stream starting point
Component Specifics

• Dispense Engines
 – Positive Displacement Pumps
 • Bellow/Diaphragm
 • Efficient method for transfer of liquids
 • Simple to replace allowing for a low cost redundancy in any system
 • Lifetime based on application
 – 3 months to 18 months
 • Contributes to shear induced particle growth
 – Pump style and geometry dependent
 • Will add slight increases in the temperature of slurry
 – Thermodynamic fact
Component Specifics

• Dispense Engines
 – Centrifugal Pump
 • Efficient method for transfer of liquids
 • Simple to replace allowing for a low cost redundancy in any system
 • Additional automation controls to enhance system operation
 • Best lifetime of all engines
 • Pressure/flow dependent
 – As head increases, flow decreases requiring more power
 • Do not contribute to shear induced particle growth
 – Shear flow
 • Will add slight increases in the temperature of slurry
 – Mechanic/Thermodynamic fact
Component Specifics

• Dispense Engines
 – Pressure Vessel
 • Inefficient method for transfer of liquids
 • Consists of a myriad of sensors, valves, and logic to operate
 – Trouble shooting issues
 • Leads to evaporation of liquid medium in slurry base
 – Air-liquid interface
 – Sensor drifts
 • Contributes to shear induced particle growth
 – Low to No RH in gas
 • Difficulty in handling slurries with sedimentation issues
Peripherals

• Automation Platforms
 – Multitude of offerings each delivering a level of complexity and cost
 • Many different styles of communication protocols
 – Depend on how much automation the user requires
 • Instrumentation
 – Control processes
 – Communicates to other systems
 – Detailed decision making
 • Can be tied into a SCADA system for global monitoring
 – Paging technicians to alarm specific issues
 – Track and trend data for quality and integrity
Maintenance Programs

• More important than thought
 – Wear and tear of slurries
 • Valves
 • Instruments

• System-wide flush
 – Highly recommended for any slurry type
 – Annual program
 – Couple with complete system validation
 • Finely inspect major components
Summary

• Capital Investment
 – Typically reviewed as an afterthought

• Important Investment
 – Delivering the chemicals to the tool
 • Blending
 • Handling
 – Quality of delivered chemical is affected by quality of the system design

• Avoid time-bombs to production
 – Focus on a long term needs and growth
 – Select a system design that delivers flexibility

• Enforce maintenance programs