

.00

Weighing Options for CMP Wastewater Treatment

Adapted from paper originally presented in Solid State Technologies

Brian V. Jenkins, Craig W. Myers, PhD, Kevin S. Olson Nalco Company, 2008

CMP is an enabling technology...

- Allows fabs to produce chips with smaller and smaller geometries
- Fabs can use the technology to become or stay more competitive
- CMP technology can be used, like many other process chemistries, to achieve specific, unique design goals

...but there are challenges associated with the by-products of its use

- What does one do with the wastewater generated from the process?
 - Solids
 - Metals
 - Organics
 - Reclaimed water

These are some of the more common slurry waste stream components

- Dissolved, suspended and settled fine particles
 - Alumina, silica, cerium oxide
 - Particles are getting finer as CMP technology evolves
- Oxidizing agents
 - eg, peroxides
- Organic complexing agents
 - Chelants
- Inorganic ions
 - Ferric nitrate, iodates
- Dissolved metals
 - Metals removed from the wafer's surface

- Buffers
 KOH, NH₄OH, MEA
- Surfactants
- Water (as much as 60:1 ratio to CMP slurry)

Most fabs discharge to POTW's

- Regulations continue to tighten
 - Metals content
 - COD
 - TOC
 - BOD
 - pH
- CMP technology continues to evolve, placing additional compliance strain on fab EHS personnel as manufacturing process change / upgrade

The following approaches can be used for some of the more commonly encountered CMP wastewater challenges

- Supplemental processes may be required for suspended solids or copper removal
 - Sludge dewatering
 - Sludge disposal

		Suspended	
рН	Oxidant	Solids	Copper
Chemical	Chemical	Coagulation /	
Neutralization	Neutralization	Clarification	Precipitation
	Activated	Membrane	lon
	Carbon	Filtration	Exchange
			Reverse
			Osmosis

Each method, not surprisingly, offers its own benefits and drawbacks

Membrane filtration

- Coagulant chemistry usually used to enhance flux
- Advantages
 - Consistent effluent quality
 - Reduced sensitivity to upstream process upsets
 - Solids dewatering up to 10%
 - Modular
 - Membrane treatment a common practice in another area of the fab (UPW)
 - Small equipment footprint
 - With correct chemical additives, can also be used for copper removal
- Disadvantages
 - Long-term membrane maintenance procedures needed
 - Membranes need to be replaced periodically

This is an example of a membrane wastewater system

Ion exchange

- Used for copper removal
- Usually best to have achieved suspended solids removal prior to copper removal step
- Advantages
 - Excellent copper removal capability (assuming appropriate resin choice and operating conditions)
 - Small footprint
 - Common and familiar unit op in a fab
 - Tolerant of upstream process changes
- Disadvantages
 - Pre-treatment required to prevent resin fouling and degradation (eg, removal of oxidants and organics necessary)
 - Relatively expensive regeneration system
 - Lower system flexibility for subsequent upstream process changes

There are a couple of important items to consider in association with this topic

- Water re-use
 - Quality variability
 - How to track changes
- What will the future look like?
 - CMP slurries becoming much more sophisticated in response to continued industry innovation
 - More "C" than "M"???
 - PV industry starting its own work using CMP