Examples of CMP Processes for the Manufacturing of MEMS Devices

Gerfried Zwicker

Fraunhofer Institute for Silicon Technology ISIT

Itzehoe, Germany

gerfried.zwicker@isit.fraunhofer.de

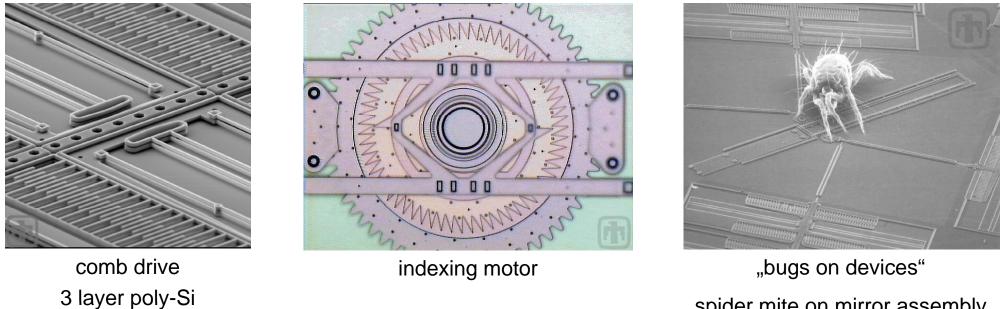
Contents

MEMS Products and Market

Comparison CMP for MEMS vs. Microelectronics

Examples of MEMS fabrication using CMP

- poly-Si angular rate sensor
- infrared digital micro mirror array
- capacitive RF-MEMS switch


Future developments

Opportunities for CMP consumables manufacturers Summary

Pioneering Work by Sandia (1995)

Examples from Sandia's MEMS gallery

spider mite on mirror assembly

Courtesy Sandia National Laboratories. More pictures and movies (!) : www.sandia.mems.gov

Page 3

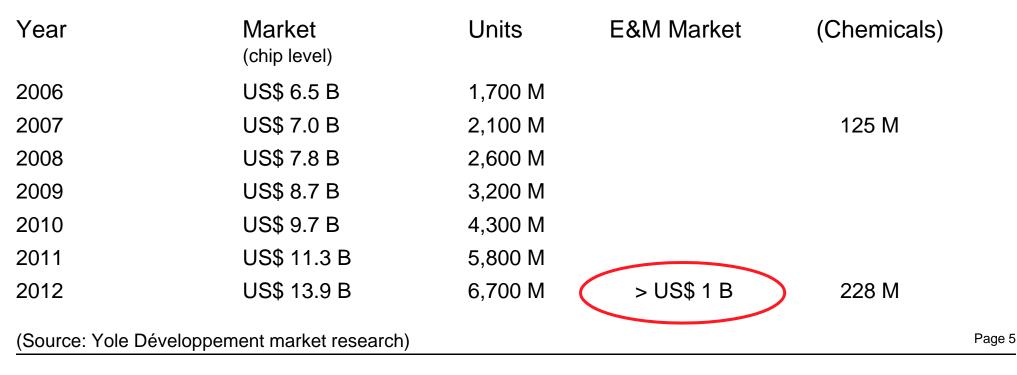
Micro-Electro Mechanical Systems (MEMS)

products and markets

MEMS applications and products

Automotive	pressure & air flow sensors, accelerometers, gyroscopes
Aeronautics	pressure sensors, gyroscopes
Consumer	ink jet heads, inertial MEMS, DLPs, Si microphones
Defense	inertial MEMS (for munitions guidance)
Industrial	pressure sensors, liquid flow sensors
Medical & Life Sciences	microfluidics for drug delivery or diagnostics
Telecom	RF-MEMS, micro relays

(Source: Yole Développement market research)


Page 4

Micro-Electro Mechanical Systems (MEMS)

products and markets

MEMS market outlook

comparison of requirements affecting CMP

MEMS specifics:	Larger structures	1 µm – 1 mm
	Thicker layers	1 – 100 µm
	Relaxed planarity requirements	exception: opto-MEMS
	Additional materials	metals, polymers, ceramics
	Smaller substrates	100-150mm, change to 200 mm
	Other substrates than Si	glass, ceramic, metal, polymer
	Reduced cleanliness requirements	exception: wafer bonding
	Reduced defect requirements	roughness, scratches
	Production	smaller unit numbers
		Page 6

CMP in MEMS Production

who is already using CMP ?

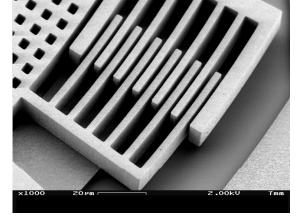
Only a few mass products are manufactured using CMP:

. . .

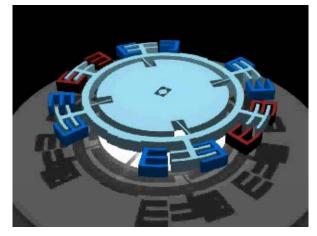
Accelerometers, gyrospoly-Si CMPe.g. BoschDLPs, micromirror arraysoxide planarizatione.g. Texas InstrumentsHard disk drives R/W headsNi, Fe, Cr polishinge.g. Seagate

- → CMP is not yet anchored in the heads of MEMS development engineers
- → Versatility of CMP processes has to be demonstrated and published

Examples of MEMS fabrication using CMP case studies

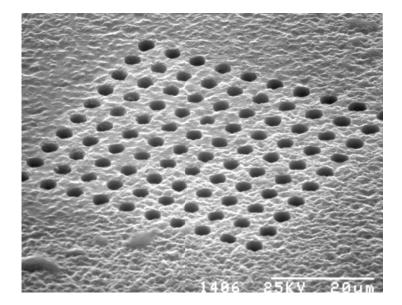

- poly-Si angular rate sensor
- infrared digital micro mirror array
- capacitive RF-MEMS switch

poly-Si angular rate sensor

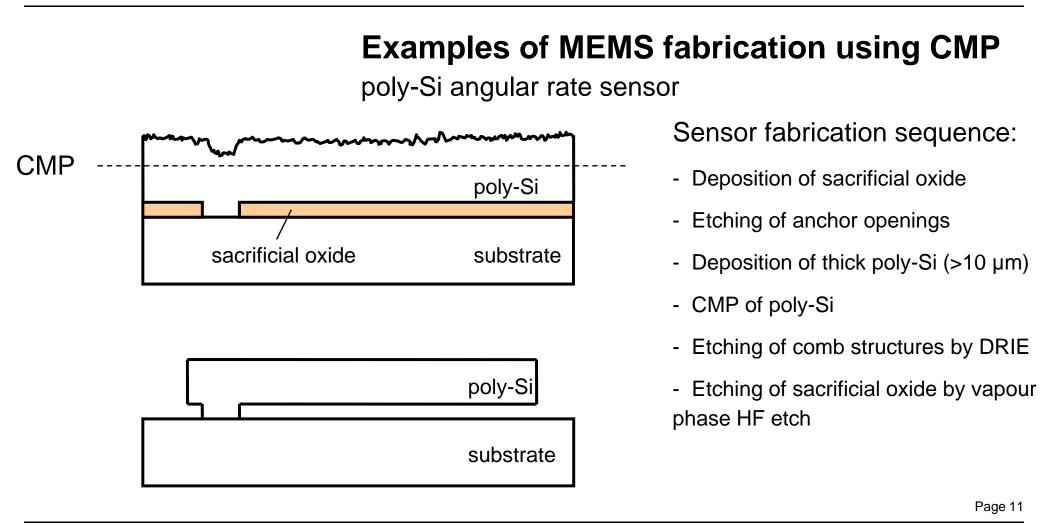

Moving poly-Si comb (capacitor) structures for acceleration and angular rate sensors (gyros), height >10 μ m, space 1 μ m.

Coriolis-force angular rate sensor

Goal

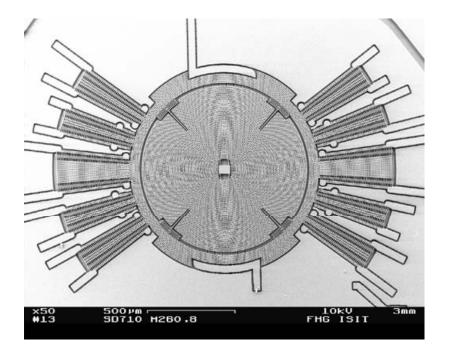

Page 9

poly-Si angular rate sensor


Problem

Thick poly-Si (> 10 µm) layers show a rough surface after deposition (R_a \approx 1 µm) \rightarrow CMP

Page 10



	Examples of MEMS fabrication using CMP poly-Si angular rate sensor
CMP results	Poly-Si CMP Starting poly-Si thickness \approx 14 µm Final poly-Si thickness = 11,35 µm Final poly-Si layer non-uniformity < ± 200 nm (range)
	CMP Process Cabot SS25 fumed silica based SiO ₂ slurry Removal Rate $\approx 0.5 \ \mu$ m/min WIWNU < 2% (~55 nm (1 σ)) on 150 mm wafers R _a ≈ 0.3 - 0.5 nm after Fujimi Glanzox buff

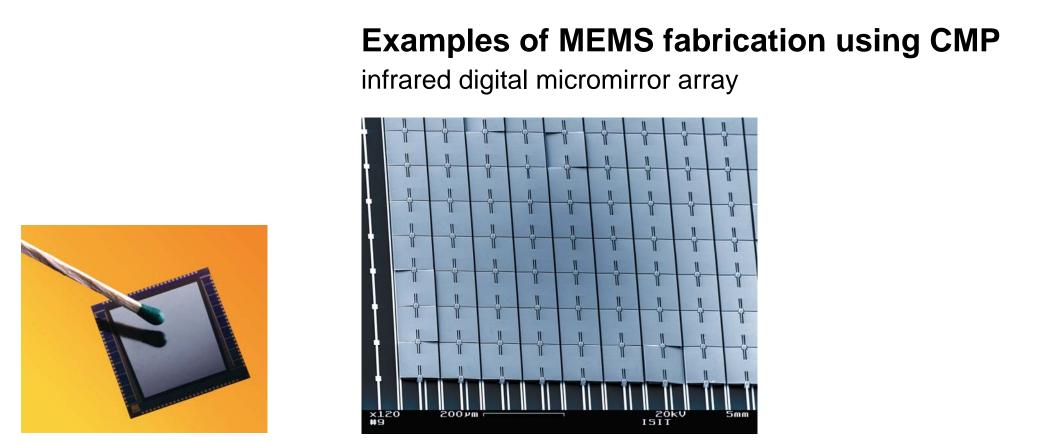
poly-Si angular rate sensor

Sensor + ASIC in MCM:

Signal range ± 300°/s Signal bandwidth 12 – 200 Hz

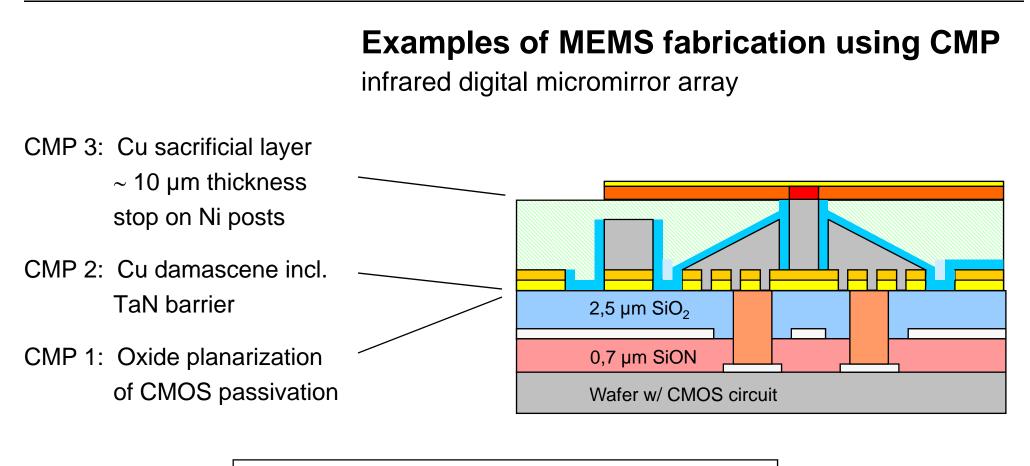
Applications: Vehicle dynamic control Car navigation Virtual reality

Development Partner: SensorDynamics AG



Examples of MEMS fabrication using CMP case studies

- poly-Si angular rate sensor
- infrared digital micro mirror array
- capacitive RF-MEMS switch

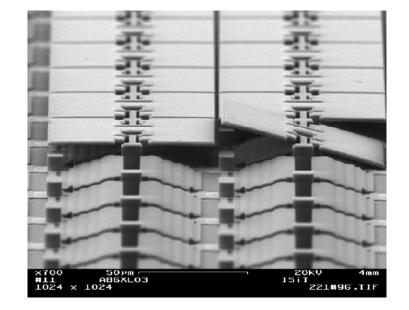


256 x 256 pixel micro-mirror array for infrared imaging system

Page 15

3 CMP steps needed in the fabrication process

Page 16

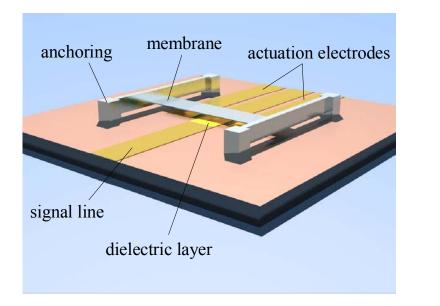


Examples of MEMS fabrication using CMP infrared digital micromirror array
Cu-CMP slurry: Commercial product with inherently high selectivity to Nickel (Cabot iCue [®] 5003) on IC1000 k-grv.
Removal rate > 0.5 µm/min Polishing time > 5 min, in-situ conditioning Roughness R _a < 3 nm
High selectivity to Nickel posts achieved
Dishing between Nickel posts < 100 nm for mirrors 80 x 80 µm size
\rightarrow sufficiently flat for IR applications

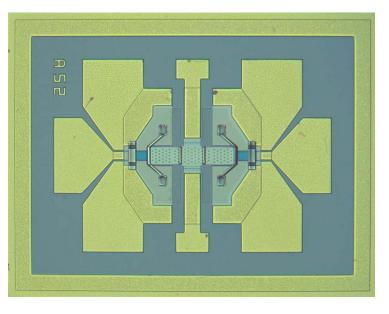
infrared digital micromirror array

Mirror array with tilted mirror after CMP 3 and copper sacrificial layer etch

Page 18

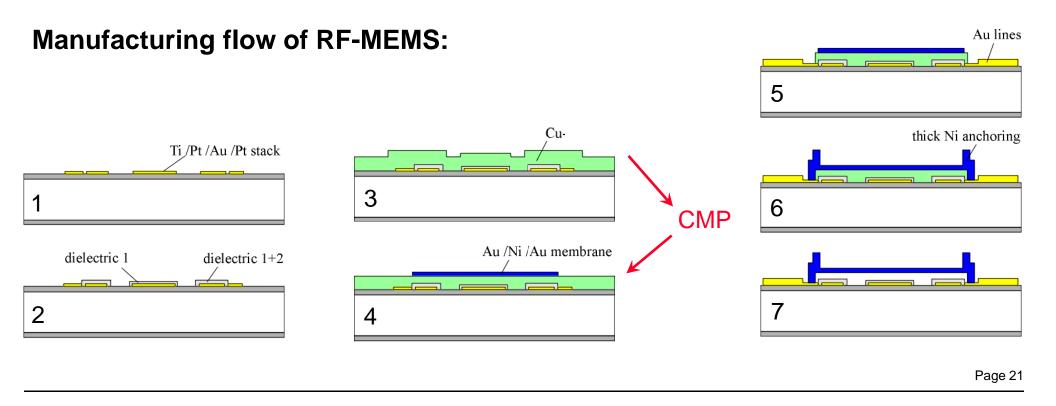


Examples of MEMS fabrication using CMP case studies


- poly-Si angular rate sensor
- infrared digital micro mirror array
- capacitive RF-MEMS switch

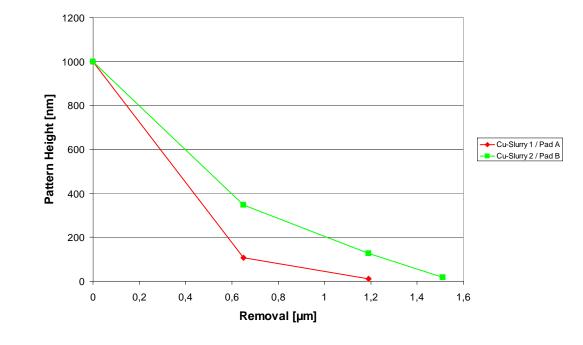
capacitive RF-MEMS switch manufactured with Cu sacrificial layer

schematic 3D-view of capacitive switch



20 GHz capacitive RF-MEMS switch

Page 20



capacitive RF-MEMS switch

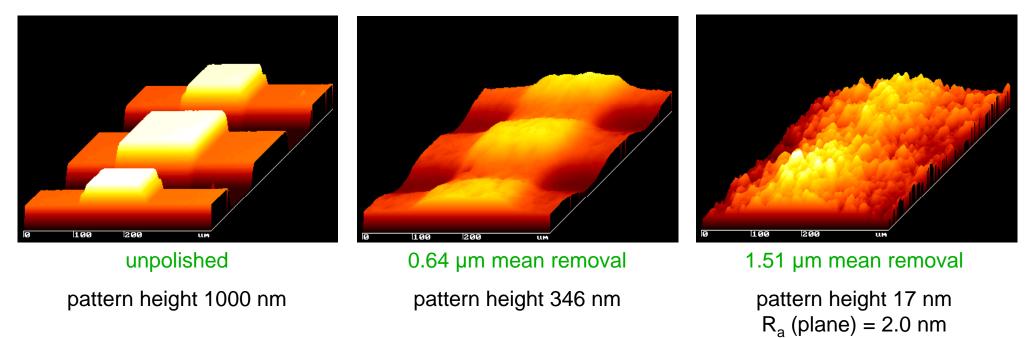
capacitive RF-MEMS switch

Final Cu sacrif.-layer thickness: 2.85 µm

Which Cu starting thickness is required for a planarity < 50 nm ?

- 1 µm pattern height reduction depending on
- polishing time (removal)
- consumables set (pad, slurry)
- \rightarrow Cu start thickness: 4.5 µm

1.65 µm Cu to be removed by CMP

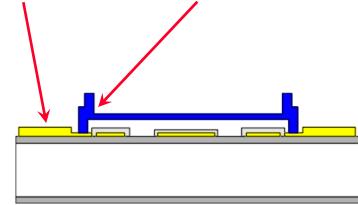

Page 22

Page 23

capacitive RF-MEMS switch

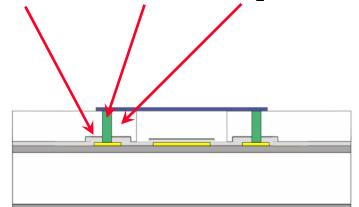
Evolution of planarity (Cu-Slurry 2 / Pad B)

micromap 512 white-light interferometer



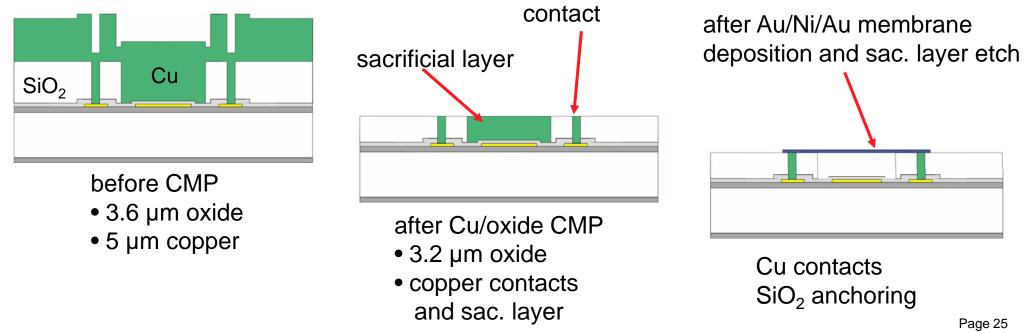
capacitive RF-MEMS switch v 2.0

Simultaneous formation of Cu sacrificial layer and membrane contacts


Conventional RF-switch:

Au lines, Ni anchoring & contact

RF-switch with damascene contacts:


Au lines, Cu contacts, SiO₂ anchoring

capacitive RF-MEMS switch v 2.0

Cu damascene contacts:

ISIT

Institut

Siliziumtechnologie

Fraunhofer

capacitive RF-MEMS switch

Encountered Problems:

- Layer stress: 5 μm Cu leads to a wafer deformation of 150 μm
- Planarization of 3.6 μ m high steps \rightarrow slurry with high Cu RR of > 500 nm required
- Overpolish into SiO₂ to achieve oxide planarity \rightarrow slurry with 1 : 1 selectivity required
- Low dishing for flat membrane to avoid buckling
 - \rightarrow Various pad/slurry combinations and/or process schemes under evaluation

Page 27

	Further Examples applications of CMP for MEMS-related fabrication
Wafer bonding	 Si-CMP for direct wafer bonding oxide CMP for anodic bonding grinding/polishing of glass frit for "laser soldering" (encapsulation of micro sensors)
Backside CMP	 grinding/polishing of Si replacement of double-side polished wafers ultra-thin silicon: stress relief after grinding
3D integration (TSVs)	 metal CMP for removal of material overburden

	Opportunities for the CMP Consumables Manufacturers
Polishing pads	 larger structures require stiffer pads w/ low defectivity other pad/sub-pad combinations to be tested
Polishing slurries	 thicker layers need higher RRs: customized solutions new/other materials to be CMPed
Conditioners	 adapted conditioners for more aggessive polishing
Brush rollers	 3D structures: danger of brush tear out
Cleaning chemicals	 layer-specific solutions needed

Outlook

MEMS market volume nearly doubles from 2007 – 2012, number of units triples

Expansion on new applications and additional layer materials:

• SiC, Si₃N₄, SiGe, Ge (sac. layer, H₂O₂ etch), Ni, Au

CMP ?

- amorphous/polycrystalline CVD diamond (high wear resistance, hydrophobic, chemically innert)
 - low-cost substrates: glass, polymers, metals, ceramic
 - piezo materials (PZT) for actuators
 - ...

Summary

- CMP is an "enabling technology" for the manufacturing of advanced integrated circuits
- CMP is deployed increasingly for the fabrication of modern MEMS devices
- CMP technology requirements:
 - ever decreasing device structure dimensions in microelectronic manufacturing
 - large structure dimensions in MEMS fabrication
- Future trends: 3D integration, packaging, new materials, new applications

Thank You

