# The Effect of Conditioner Design on Pad Texture

Morgan Advanced Ceramics Diamonex<sup>®</sup> Products Division David Slutz July 17, 2008



Morgan Technical Ceramics

## Phoenix<sup>®</sup> CMP Pad Conditioner





Morgan Technical Ceramics Slide 2

## Phoenix<sup>®</sup> edge CMP Pad Conditioner





Design A

Design B

#### Design C



Morgan Technical Ceramics Slide 3

# **Pad Texture Results**



Morgan Technical Ceramics

### Phoenix Medium Grit Conditioner- Interferometry



#### Inner

#### **Middle**

#### **Outer**

Numerous large asperities,

source of wafer defects.





Morgan Morgan Technical Ceramics

Morgan Technical Ceramics Slide 5

## Pad Texture (Medium Grit)



## Phoenix Fine Grit - Interferometry Line 2



#### Inner

#### Middle

#### **Outer**



Surface Height (microns)



#### Pad Texture



## Phoenix edge pad Conditioner - Interferometry

#### 2x2 mm image





Morgan Technical Ceramics Slide 9

#### Pad Surface Texture Comparison



## Interferometry Data



Surface Height (microns)





Morgan Technical Ceramics Slide 11



Materials Technology

# **Pad Texture Result**

# for Copper Process



Morgan Technical Ceramics

### **Experiment Conditions**

- Wafer
  - 200-mm blanket copper wafer
- Pad
  - IC1020 M groove
- Slurry
  - 200 ml of Fujimi PL-7103 slurry + 800 ml of Dl  $H_2O$  + 33 grams of 30% ultra pure  $H_2O_2$
- Rinse
  - DI H<sub>2</sub>O flow rate 2,000 ml/min for 30 seconds.

- Pad Conditioning
  - Morgan Diamond Discs
    - Phoenix Fine grit
    - Phoenix Medium grit
    - Phoenix Coarse grit
    - Phoenix edge Design C (2 runs)
  - In-situ pad conditioning = 6 lb<sub>f</sub>
  - Tweaked optimized sweep
  - 2<sup>nd</sup> Phoenix edge- sinusoidal sweep
- Wafer Polishing
  - Polishing pressure = 2 PSI
  - Platen sliding velocity = 42 RPM
  - Polishing time = 60 seconds



Morgan Technical Ceramics Slide 13

## **Composite Topography Images**

#### **Phoenix Coarse Grit**







#### Summit Height Distributions





Morgan Technical Ceramics Slide 15

#### Asperity Height (Mean & >20um)



#### Surface Height Probability Density Functions



Morgan Technical Ceramics

Morgan Technical Ceramics Slide 17

#### Pad Texture and % Asperity Heights >20µ



## Summit Sharpness





Morgan Technical Ceramics Slide 19

#### Summit Sharpness (Mean & Sharp)



#### Phoenix Coarse Grit-Image 8



50 µm



Morgan Technical Ceramics Slide 21

### Phoenix Coarse Grit-Image 8 at 2 psi



Contact Area Shape is mostly round

50 µm



Morgan Technical Ceramics Slide 22

### Phoenix Medium Grit-Image 5 at 2 psi



Contact Area shapes are round and elongated

50 µm



Morgan Technical Ceramics Slide 23

### Phoenix Fine Grit-Image 3 at 2 psi



Contact Area shapes are mostly elongated

50 µm



Morgan Technical Ceramics Slide 24

## Phoenix edge- Image 12 at 2 psi



Contact area shapes are elongated and curled

50 µm



Morgan Technical Ceramics Slide 25

#### **Composite Contact Area Images**

#### **Phoenix Coarse Grit**



#### **Phoenix Medium Grit**



#### **Phoenix Fine Grit**



#### Phoenix edge-Run 1



#### Phoenix edge-Run 2





#### Sliding Direction Morgan Technical Ceramics

organ Technical Ceramic Slide 26

# Contact Area Percentage & Point Density



#### Mean Contact Pressure



Morgan Technical Ceramics

Slide 28

Materials Technology

#### **Contact Area Size Distribution**



Morgan Morgan Technical Ceramics

Morgan Technical Ceramics Slide 29

#### Contact Area Size (Mean & Large)



Morgan Technical Ceramics

Slide 30

# **Copper Process Data Results**



Morgan Technical Ceramics

#### **Copper Removal Rate & Non-Uniformity**



#### Copper Removal Rate vs. COF



#### Copper Removal Rate vs. Pad Temperature



#### Pad Cut Rates



Materials Technology

# Summary-Edge Cutting verses Point Cutting

#### Pad Texture

- Edge cutting produces a smoother pad texture with fewer large asperities
- Edge cutting produces asperity shapes with a sharpness in the mid range of point cutting. However, for point cutting the number of sharp asperities decreases with diamond size.
- Edge cutting produces smaller elongated curled contact area shapes as opposed to larger round contact regions for point cutting.
- Edge cutting produces less contact area, fewer number of contacts, and fewer large contact regions.

#### Copper Process

- Edge cutting resulted in ~50% increase in copper removal rate over point cutting.
- Edge cutting resulted in comparable non-uniformity
- Edge cutting resulted in vastly reduced pad cut rate over point cutting



## Final Thoughts

## What causes the increase in copper removal rate?

- COF & pad temperature can not explain the increase in MRR for edge cutting
- Pad surface features and interaction with wafer
  - •No one pad feature shows a direct relationship to MRR.
  - Combination of pad features might explain the increase in MRR
- Slurry flow and mixing due to the geometric design of the spiral conditioner is a strong possibility.

#### □ Future Work:

- Continue work to find any correlation between Pad texture and MRR
- Investigate the effect of conditioner geometry on MRR
- Marathon study to determine Phoenix edge conditioner life, stability of process, and defectivity



#### Acknowledgements







Morgan Technical Ceramics Slide 38

# **Thank You**



Morgan Technical Ceramics