Semiconductor Industry Trends and What They Mean to CMP

NCCAVS CMP User's Group – July 17, 2007 Robert L. Rhoades, Ph.D. (Entrepix, Inc.) Karey Holland, Ph.D. (Techcet Group, LLC)

Semiconductor Materials Information

Semiconductor Industry Trends and What They Mean to CMP

Market Drivers and Transitions

Trend #1 – Continuing "Speedsters"

Trend #2 – The New Mainstream

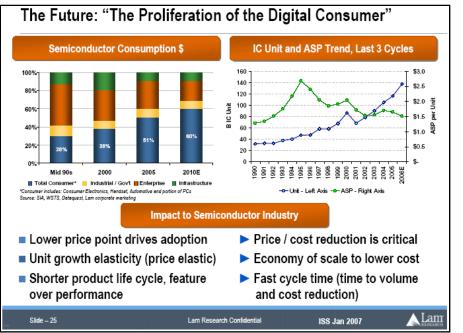
Trend #3 – Emerging Devices

What Does All This Mean for CMP?

Semiconductor Materials Information

Market Driver – <u>The Consumer</u>

Source: 2007 Industry Strategy Symposium – Hans Stork, CTO, Texas Instruments



A Consumer-Driven Transition

<u>Source: 2007 Industry Strategy Symposium</u> – Steve Newberry, CEO, Lam Research Corporation

- Consumers % increases.
- Unit volumes increasing while ASPs flat.

Conclusion:

- Price / cost reduction is critical.
- Speed short life cycles; fast market response.

Semiconductor Materials Information

- Consumers are paying less AND getting more, even though ASPs have flattened.
- Companies that have adapted still continue posting better financial returns.

Conclusion:

 Appropriate mfg - 300mm (digital), 200/150mm (analog) & extending the useful life of fabs and process platforms

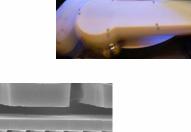
	TI & National S	emicondu	ictor Finar	ncial Exam	ples	
	Metric	2003	2004	2005	2006	
	TI Gross Margin	40.3%	44.7%	47.5%	51.0%	
	WW DSP ASP	\$5.76	\$5.84	\$5.83	\$5.82	
	WW Analog ASP	\$0.57	\$0.60	\$0.55	\$0.53	
	National Semiconductor Gross Margin	46.7%	52.2%	56.2%	60.0%	
	Source: TI, National, WSTS, IC I	nsights				
5						
nsights	January 8-10, 2007		ISS 200	7		31

Source: 2007 Industry Strategy Symposium – Bill McClean, President, IC Insights

CMP FastForward[™] Technology Nodes

- Historical progression for >20 years 0.5 um \rightarrow 0.35 \rightarrow 0.25 \rightarrow 0.18 \rightarrow 0.15 \rightarrow 90 nm \rightarrow 65 nm \rightarrow etc.
- Devices, equipment platforms, even entire fabs were identified by their "target node"
- Industry language referenced the expectations
 Leading edge mainstream trailing edge
 Early adopters fast followers late stage
 Etc.

Changes now well underway may provide alternative ways of looking at the industry.


Industry Groupings

Particularly from a CMP perspective

- Group I The most advanced, leading edge devices
 - Wafer sizes: 300mm & possibly 450mm (future)
 - Technology nodes: 65nm, 45nm and below
 - Materials: high k, metal gates, ULK, Cu barriers, etc.
- Group II Improvements to mainstream ICs
 - Wafer sizes: 200mm & 150mm

CMP FastForward[™]

- Technology nodes: 90nm to 350nm and above
- Materials: oxides, tungsten, etc.
- Group III Emerging technologies & new applications
 - Wafer sizes: 200mm, 150mm, 100mm and smaller
 - Technology nodes: various
 - Materials: wide range of metals, oxides, polymers, and more
 - MEMS, nanotechnology, SiC, GaN, optics, etc.

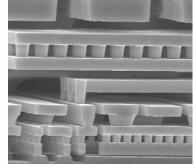


Photo displayed with permission of Freescale Semiconductor, Inc.

Semiconductor Materials Information

<u>Semiconductor Industry Trends and What They Mean to CMP</u>

Market Drivers and Transitions

Trend #1 – Continuing "Speedsters"

Trend #2 – The New Mainstream

Trend #3 – Emerging Devices

What Does All This Mean for CMP?

entre

CMP FastForward

Segment Characteristics

Financial Factors and Trends Across 3 Industry Segments

Financial Factor	Speedster		New Ma	instream	Emerging		
Financial Factor	Level	Direction	Level	Direction	Level	Direction	
Average Annual Capital	High	1					
Technology R&D	High	+					
Manufacturing Cost/chip	High	+					
Volume	High	-					
Average Selling Price (ASP)	High	¥					

Microprocessor transistors per chip have increased by over 5 orders of magnitude in 35 years.

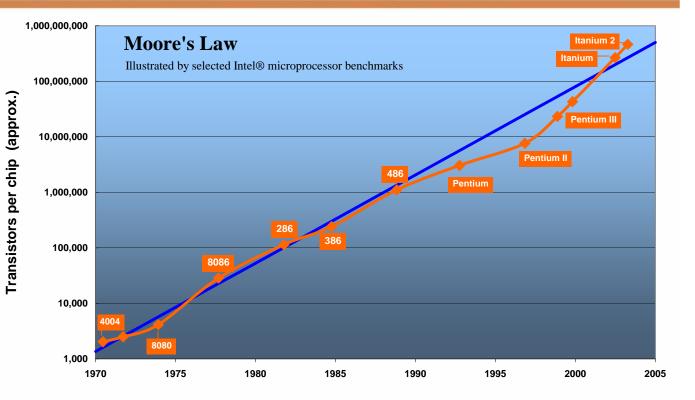

Current generation chips have more than 1.7 billion transistors

Photo and CMP are 2 critical processes required to stay on trend line:

- Photo → SHRINKS
- CMP \rightarrow STACKS

Semiconductor Materials Information

Moore's Law has not been derailed by industry cycles, technology hurdles, or the economy ... but it does not really apply to every semiconductor company ... only the "Speedsters"!

Moore's Law

Speedster Summary

- Typical companies: microprocessor and memory makers, large-scale foundries
- Willing to spend capital on new fab construction (mostly 300 mm)
- Willing to adapt new materials or processes as needed to achieve performance
- Designs AND process technology both change at a rapid pace
- Design focus = performance
- Process focus = speed or acceptable yield

Semiconductor Industry Trends and What They Mean to CMP

Market Drivers and Transitions

Trend #1 – Continuing "Speedsters"

Trend #2 – The New Mainstream

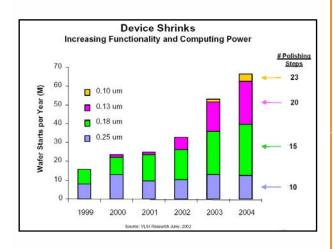
Trend #3 – Emerging Devices

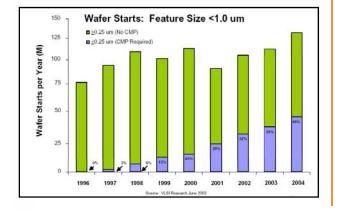
What Does All This Mean for CMP?

Semiconductor Materials Information

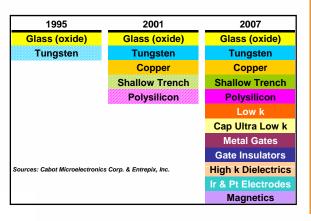
CMP FastForward

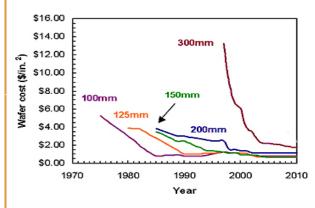
Segment Characteristics


Financial Factors and Trends Across 3 Industry Segments


Financial Factor	Speedster		New Mainstream		Emerging	
Financial Factor	Level	Direction	Level	Direction	Level	Direction
Average Annual Capital	High	^	Moderate	⇒		
Technology R&D	High	•	Moderate	•		
Manufacturing Cost/chip	High	¥	Moderate	44		
Volume	High	-	High	1		
Average Selling Price (ASP)	High	¥	Low	-		

CMP FastForward Manufacturing Complexity


VOLUME


TECHNOLOGY



COST

COST PER SQUARE INCH vs. WAFER SIZE

New Mainstream Summary

- Wide range of products including digital, analog, mixed signal, power, etc.
- Adapting to a world of flat or falling ASP's
- Cost factors and yield becoming MUCH more important than technology factors
- Some devices enjoy long lifecycles (but not all)
- Designs may change rapidly, but process technology intentionally being held much more stable
- Design focus = features and simplicity
- Process focus = cost and maximizing yield

Semiconductor Industry Trends and What They Mean to CMP

Market Drivers and Transitions

Trend #1 – Continuing "Speedsters"

Trend #2 – The New Mainstream

Trend #3 – Emerging Devices

What Does All This Mean for CMP?

Semiconductor Materials Information

CMP FastForward

Segment Characteristics

Financial Factor	Speedster		New Mainstream		Emerging	
	Level	Direction	Level	Direction	Level	Direction
Average Annual Capital	High	1	Moderate	$\downarrow \downarrow$	Low	-
Technology R&D	High	^	Moderate	•	High	¥
Manufacturing Cost/chip	High	•	Moderate	44	High	¥
Volume	High	-	High	1	Low	^
Average Selling Price (ASP)	High	¥	Low	-	High	¥

Growth in Applications

CMP is still evolving for CMOS applications ... And many newer applications are now also being developed beyond "traditional" CMP.

• MEMS

- Oxides (doped or undoped)
- Polysilicon (usually structural)

CMP FastForward[™]

- Nitrides and oxynitrides
- Separation layer (MEMS-first or MEMS-last)
- Metals (esp. for reflective surfaces)

Advanced Substrates

- Strained layer epi substrates
- Custom III-IV and II-IV epi layers
- SOI
- GaN, GaP, SiC, etc.
- Various surfaces for direct wafer bonding

- Integrated Optics
 - Grating structures
 - Embedded waveguides
 - Integrated optical elements
- Other
 - Phase change memory materials
 - Photoresist and other polymers
 - Magnetic materials (active or shielding)
 - Advanced packaging
 - 3D IC's and similar device technologies

Example: MEMS

Typical Devices:

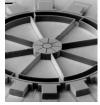
- Accelerometers
- > Torque sensors
- Optical devices
- Microfluidic processors

Typical Materials

- > Undoped oxides (TEOS, silane, etc.)
- Doped oxides (PSG, BPSG, etc.)
- Polysilicon
- Some metals (specialized apps)

Key Aspects of the Application

- > Materials and core processes generally adapted from CMOS fabrication
- CMP is an enabling technology for many designs
- > Thicknesses and step heights substantially larger than typical of CMOS
- Lengthy polish times challenge process stability & consumables lifetime



Photos downloaded from web sites, including Sandia National Lab

Emerging Segment Summary

- Many products not even based on traditional CMOS
- Often adapting silicon CMOS process techniques
- Startup or new entry mentality
- Frequently start on smaller wafer sizes and transition up as volume production increases
- Process technology is generally not mature due to some fraction of "creative" steps
- Design focus = new devices
- Process focus = achieving acceptable yield and ramp

Semiconductor Industry Trends and What They Mean to CMP

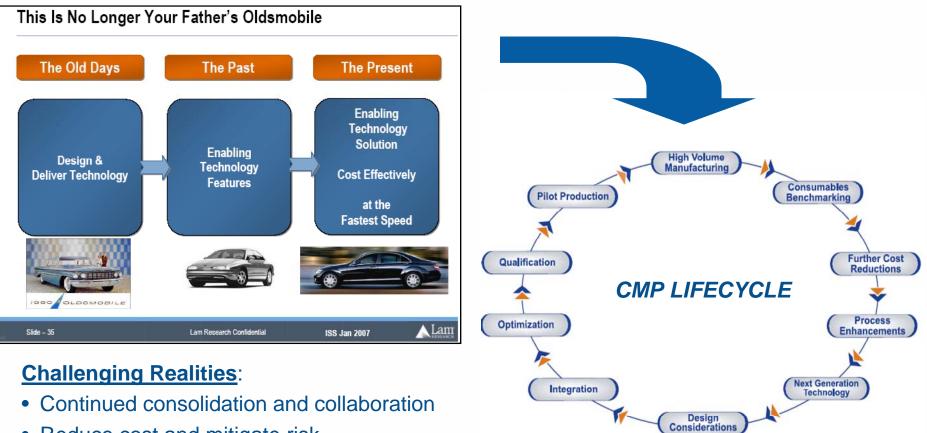
Market Drivers and Transitions

Trend #1 – Continuing "Speedsters"

Trend #2 – The New Mainstream

Trend #3 – Emerging Devices

What Does All This Mean for CMP?

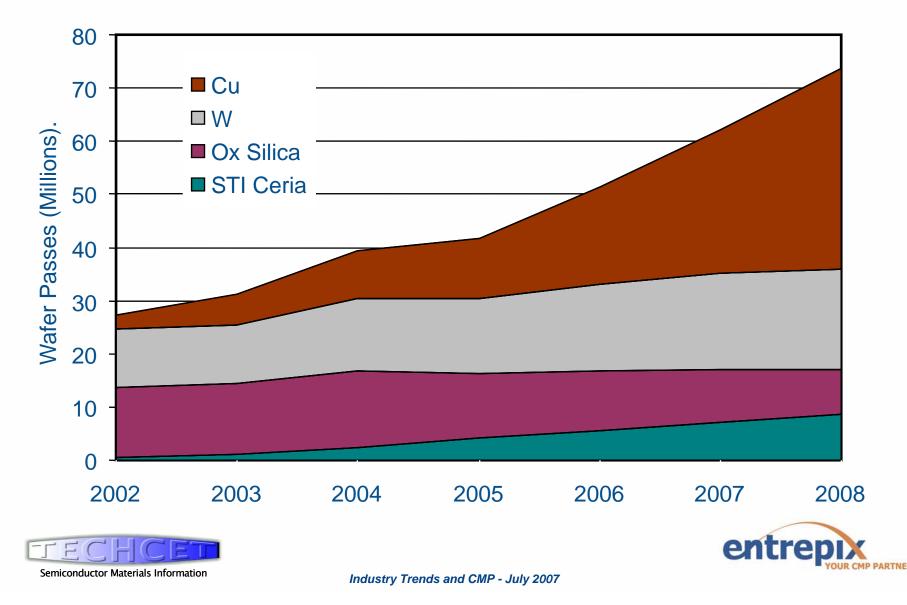


Semiconductor Materials Information

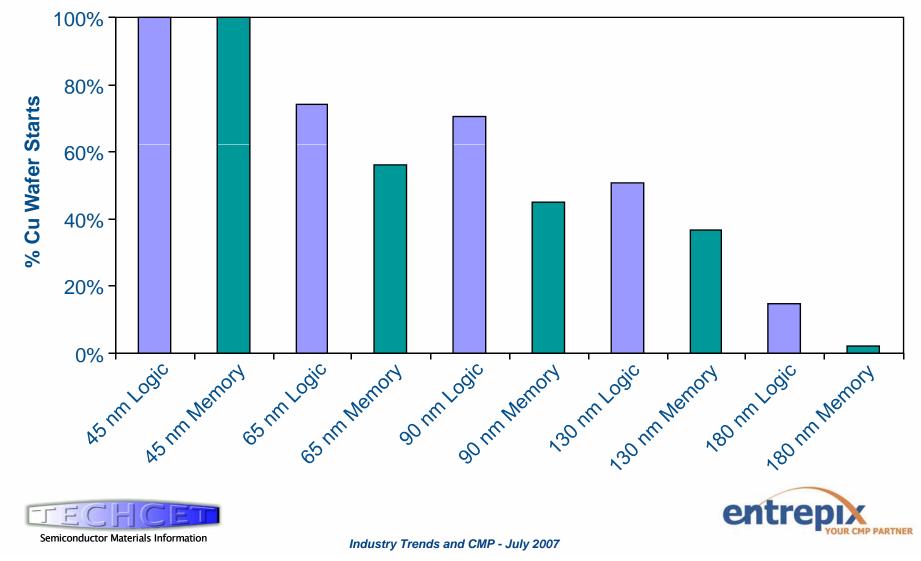
CMP FastForward

The Challenge for CMP

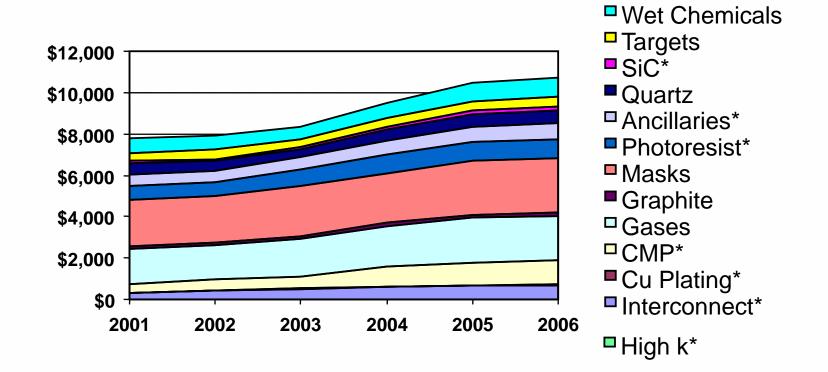
Source: 2007 Industry Strategy Symposium - Steve Newberry, CEO, Lam Research Corporation


- Reduce cost and mitigate risk
- Accelerate time to revenue
- Maximize responsiveness & ultimately financial return

Semiconductor Materials Information



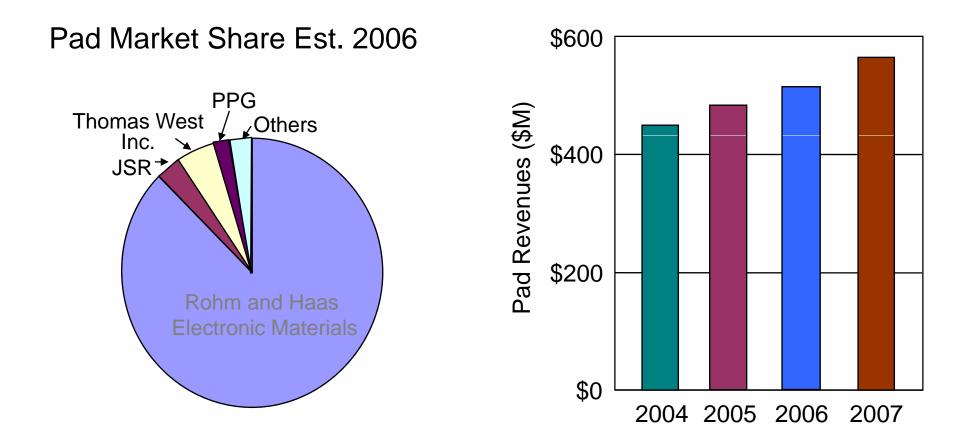
Forecast CMP Wafer Passes


CMP FastForward

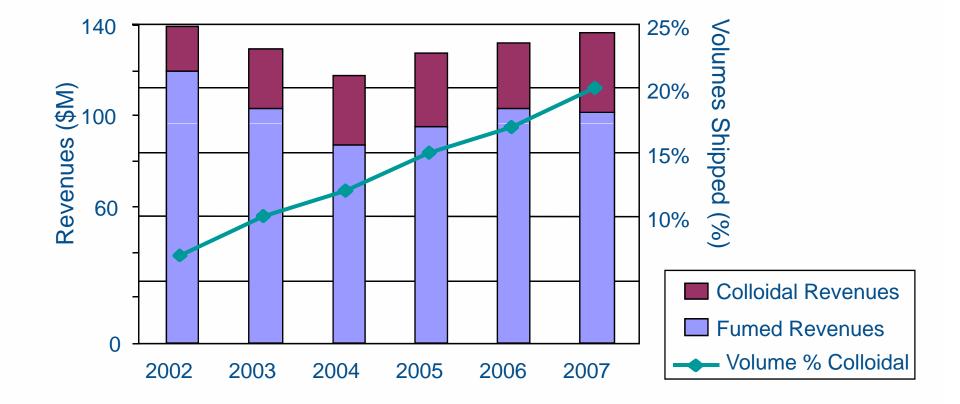
Growth of Cu in Memory and Logic

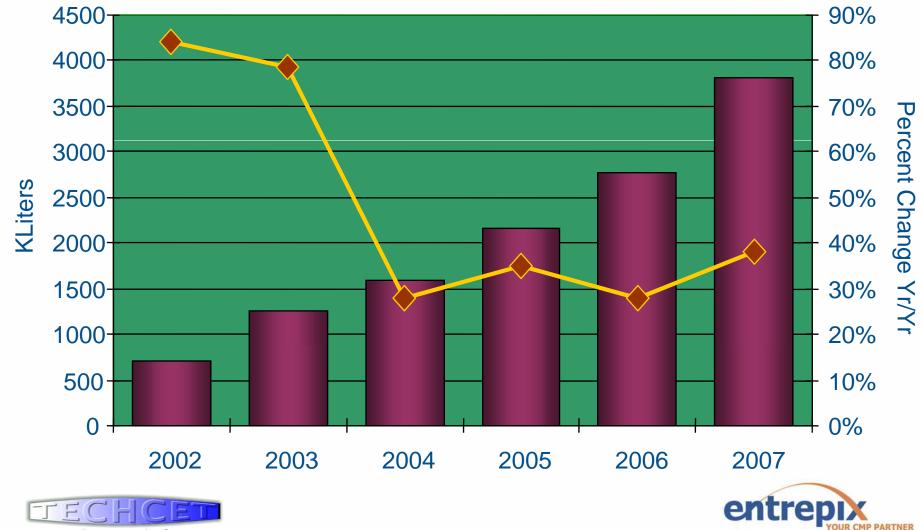
Semiconductor Process Materials Growth History (\$millions / year)

Not surprisingly, materials targeted for CMP and photolithography (masks + PR) have highest growth rates



CMP FastForward




CMP FastForward™

Oxide CMP Abrasives

Post CMP Clean Chemicals

Semiconductor Materials Information

How is any of this information useful?

Management decisions are influenced by certain perspectives and trends depending on business model and market segment.

Speedsters							
EQUIPMENTWilling to buy for new fabs or to retool existing fabsDrive improvements in both capability and productivity							
CONSUMABLES	Push performance in nearly every aspect of CMP Defectivity is becoming an increasing focus						
MATERIALS	Adapt existing materials whenever feasible, but … Will not hesitate to integrate new materials when necessary						

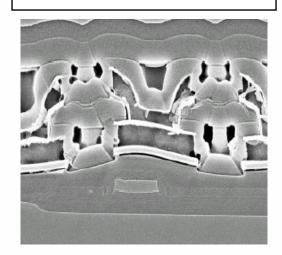
CMP FastForward

Decision Drivers

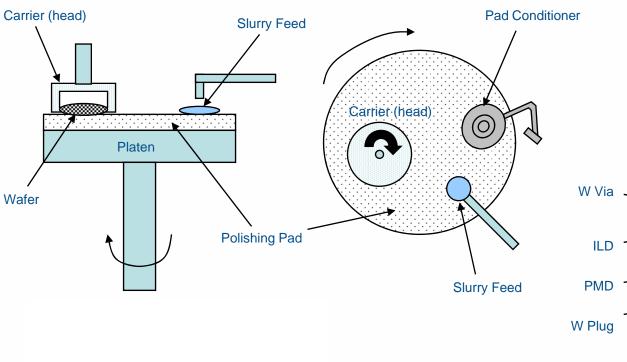
New Mainstream							
EQUIPMENTPreserve capital and extend depreciated tools whenever possibleBuy tools only for "must have" capacity expansionsGenerally staying focused on 200mm and below							
CONSUMABLES	Extreme focus on reducing cost per wafer Defectivity and other factors to improve yield are also key						
MATERIALS	Adapt proven materials and process methods … period. Optimize process flows for simplicity and yield						

Emerging Technology							
EQUIPMENT	Preserve capital and minimize overhead Outsourcing is a strong trend (fabless) Generally start at small wafer sizes and work up to 200mm						
CONSUMABLES	Not locked in to "traditional" CMP pad/slurry offerings Lots of small-volume niche opportunities						
MATERIALS	Willing to explore a wide range of materials for unique properties Process requirements vary by several orders of magnitude						

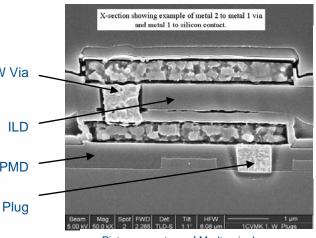
Thank you...



(a) Side View


What is CMP...

CMP = Chemical Mechanical Polishing (Planarization)


- Developed by IBM in late 1980's. Licensed to and quickly adopted by both Intel and Micron in the early 1990's
- Key manufacturing process required to planarize and smooth critical surfaces during manufacturing which improves device performance and yield

No CMP – Traditional Device

4 Basic CMP Steps - Newer Device

Industry Trends and CMP - July 2007

(b) Top View

Pictures courtesy of Medtronic, Inc.

2006 International Technology Roadmap for Semiconductors (ITRS)

MPU and ASIC Interconnect Technology Requirements—Near-term Years

Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM ½ Pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32
MPU/ASIC Metal 1 ½ Pitch (nm)(contacted)	90	78	68	59	52	45	40	36	32
MPU Physical Gate Length (nm)	32	28	25	22	20	18	16	14	13
Number of DRAM metal levels	4	4	4	4	4	4	4	4	4
Number of MPU metal levels + optional	11 +4	11 + 4	11 + 4	12 + 4	12 + 4	12 + 4	12 + 4	12 + 4	13 + 4

CMP FastForward

