Semiconductor Industry Trends and What They Mean to CMP

Robert L. Rhoades, Ph.D. (Entrepix, Inc.)
Karey Holland, Ph.D. (Techcet Group, LLC)
Semiconductor Industry Trends and What They Mean to CMP

Market Drivers and Transitions

Trend #1 – Continuing “Speedsters”

Trend #2 – The New Mainstream

Trend #3 – Emerging Devices

What Does All This Mean for CMP?
Market Driver – The Consumer

Consumers Demanding More for Less

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>453.6 grams/16 oz</td>
<td>283.5 grams/10 oz</td>
<td>164 grams/5.8 oz</td>
<td>180 grams/6.3 oz</td>
</tr>
<tr>
<td>15 minute talk time</td>
<td>40 minute talk time</td>
<td>90 minute talk time</td>
<td>250 minute talk time</td>
</tr>
<tr>
<td>8 hr standby</td>
<td>5 hr standby</td>
<td>10 hr standby</td>
<td>25 hr standby</td>
</tr>
<tr>
<td>$3,995</td>
<td>$395</td>
<td>$395</td>
<td>$395</td>
</tr>
</tbody>
</table>

- **1983**: 2.5 oz, 100 minute talk time, 8 hr stand-by.
- **1990**: 9 oz, 300 minute talk time.
- **2000**: 6 oz, 900 minute talk time, polyphonic ring tones.
- **2006**: 5 oz, 2500 minute talk time, polyphonic ring tones, MP3 player, internet.

Effects of a consumer driven market – "Consumers Demand More for Less" and 'More in Less'.

Historically enabled by innovations following Moore's Law.

Next billion users to come from emerging markets.
A Consumer-Driven Transition

Source: 2007 Industry Strategy Symposium – Steve Newberry, CEO, Lam Research Corporation

- Consumers are paying less AND getting more, even though ASPs have flattened.
- Companies that have adapted still continue posting better financial returns.

Conclusion:
- Appropriate mfg - 300mm (digital), 200/150mm (analog) & extending the useful life of fabs and process platforms

Impact to Semiconductor Industry
- Lower price point drives adoption
- Unit growth elasticity (price elastic)
- Shorter product life cycle, feature over performance

Price / cost reduction is critical
- Economy of scale to lower cost
- Fast cycle time (time to volume and cost reduction)

Conclusion:
- Price / cost reduction is critical.
- Speed – short life cycles; fast market response.

Source: 2007 Industry Strategy Symposium – Bill McClean, President, IC Insights

Industry Trends and CMP - July 2007
• Historical progression for >20 years
 0.5 um → 0.35 → 0.25 → 0.18 → 0.15 → 90 nm → 65 nm → etc.

• Devices, equipment platforms, even entire fabs were identified by their “target node”

• Industry language referenced the expectations
 Leading edge – mainstream – trailing edge
 Early adopters – fast followers – late stage
 Etc.

Changes now well underway may provide alternative ways of looking at the industry.
Industry Groupings
Particularly from a CMP perspective

- **Group I – The most advanced, leading edge devices**
 - Wafer sizes: 300mm & possibly 450mm (future)
 - Technology nodes: 65nm, 45nm and below
 - Materials: high k, metal gates, ULK, Cu barriers, etc.

- **Group II – Improvements to mainstream ICs**
 - Wafer sizes: 200mm & 150mm
 - Technology nodes: 90nm to 350nm and above
 - Materials: oxides, tungsten, etc.

- **Group III – Emerging technologies & new applications**
 - Wafer sizes: 200mm, 150mm, 100mm and smaller
 - Technology nodes: various
 - Materials: wide range of metals, oxides, polymers, and more
 - MEMS, nanotechnology, SiC, GaN, optics, etc.
Overview

Semiconductor Industry Trends and What They Mean to CMP

Market Drivers and Transitions

Trend #1 – Continuing “Speedsters”

Trend #2 – The New Mainstream

Trend #3 – Emerging Devices

What Does All This Mean for CMP?
Financial Factors and Trends Across 3 Industry Segments

<table>
<thead>
<tr>
<th>Financial Factor</th>
<th>Speedster</th>
<th>New Mainstream</th>
<th>Emerging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level</td>
<td>Direction</td>
<td>Level</td>
</tr>
<tr>
<td>Average Annual Capital</td>
<td>High</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Technology R&D</td>
<td>High</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Cost/chip</td>
<td>High</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>High</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Average Selling Price (ASP)</td>
<td>High</td>
<td>↓</td>
<td></td>
</tr>
</tbody>
</table>
Microprocessor transistors per chip have increased by over 5 orders of magnitude in 35 years.

Current generation chips have more than 1.7 billion transistors

Photo and CMP are 2 critical processes required to stay on trend line:

• Photo → SHRINKS
• CMP → STACKS

Moore’s Law has not been derailed by industry cycles, technology hurdles, or the economy ... but it does not really apply to every semiconductor company ... only the “Speedsters”!
• Typical companies: microprocessor and memory makers, large-scale foundries
• Willing to spend capital on new fab construction (mostly 300 mm)
• Willing to adapt new materials or processes as needed to achieve performance
• Designs AND process technology both change at a rapid pace
• Design focus = performance
• Process focus = speed or acceptable yield
Semiconductor Industry Trends and What They Mean to CMP

Market Drivers and Transitions

Trend #1 – Continuing “Speedsters”

Trend #2 – The New Mainstream

Trend #3 – Emerging Devices

What Does All This Mean for CMP?
Financial Factors and Trends Across 3 Industry Segments

<table>
<thead>
<tr>
<th>Financial Factor</th>
<th>Speedster</th>
<th>New Mainstream</th>
<th>Emerging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Direction</td>
<td>Level</td>
<td>Direction</td>
</tr>
<tr>
<td>Average Annual Capital</td>
<td>High</td>
<td>↑</td>
<td>Moderate</td>
</tr>
<tr>
<td>Technology R&D</td>
<td>High</td>
<td>↑</td>
<td>Moderate</td>
</tr>
<tr>
<td>Manufacturing Cost/chip</td>
<td>High</td>
<td>↓</td>
<td>Moderate</td>
</tr>
<tr>
<td>Volume</td>
<td>High</td>
<td>-</td>
<td>High</td>
</tr>
<tr>
<td>Average Selling Price (ASP)</td>
<td>High</td>
<td>↓</td>
<td>Low</td>
</tr>
</tbody>
</table>
• Wide range of products including digital, analog, mixed signal, power, etc.
• Adapting to a world of flat or falling ASP’s
• Cost factors and yield becoming MUCH more important than technology factors
• Some devices enjoy long lifecycles (but not all)
• Designs may change rapidly, but process technology intentionally being held much more stable
• Design focus = features and simplicity
• Process focus = cost and maximizing yield
Semiconductor Industry Trends and What They Mean to CMP

Market Drivers and Transitions

Trend #1 – Continuing “Speedsters”

Trend #2 – The New Mainstream

Trend #3 – Emerging Devices

What Does All This Mean for CMP?
Financial Factors and Trends Across 3 Industry Segments

<table>
<thead>
<tr>
<th>Financial Factor</th>
<th>Speedster</th>
<th>New Mainstream</th>
<th>Emerging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level</td>
<td>Direction</td>
<td>Level</td>
</tr>
<tr>
<td>Average Annual Capital</td>
<td>High</td>
<td>↑</td>
<td>Moderate</td>
</tr>
<tr>
<td>Technology R&D</td>
<td>High</td>
<td>↑</td>
<td>Moderate</td>
</tr>
<tr>
<td>Manufacturing Cost/chip</td>
<td>High</td>
<td>↓</td>
<td>Moderate</td>
</tr>
<tr>
<td>Volume</td>
<td>High</td>
<td>-</td>
<td>High</td>
</tr>
<tr>
<td>Average Selling Price (ASP)</td>
<td>High</td>
<td>↓</td>
<td>Low</td>
</tr>
</tbody>
</table>
CMP is still evolving for CMOS applications ... And many newer applications are now also being developed beyond “traditional” CMP.

• **MEMS**
 - Oxides (doped or undoped)
 - Polysilicon (usually structural)
 - Nitrides and oxynitrides
 - Separation layer (MEMS-first or MEMS-last)
 - Metals (esp. for reflective surfaces)

• **Advanced Substrates**
 - Strained layer epi substrates
 - Custom III-IV and II-IV epi layers
 - SOI
 - GaN, GaP, SiC, etc.
 - Various surfaces for direct wafer bonding

• **Integrated Optics**
 - Grating structures
 - Embedded waveguides
 - Integrated optical elements

• **Other**
 - Phase change memory materials
 - Photoresist and other polymers
 - Magnetic materials (active or shielding)
 - Advanced packaging
 - 3D IC’s and similar device technologies
Example: MEMS

Typical Devices:
- Accelerometers
- Torque sensors
- Optical devices
- Microfluidic processors

Typical Materials
- Undoped oxides (TEOS, silane, etc.)
- Doped oxides (PSG, BPSG, etc.)
- Polysilicon
- Some metals (specialized apps)

Key Aspects of the Application
- Materials and core processes generally adapted from CMOS fabrication
- CMP is an enabling technology for many designs
- Thicknesses and step heights substantially larger than typical of CMOS
- Lengthy polish times challenge process stability & consumables lifetime

Photos downloaded from web sites, including Sandia National Lab
Emerging Segment Summary

- Many products not even based on traditional CMOS
- Often adapting silicon CMOS process techniques
- Startup or new entry mentality
- Frequently start on smaller wafer sizes and transition up as volume production increases
- Process technology is generally not mature due to some fraction of “creative” steps
- Design focus = new devices
- Process focus = achieving acceptable yield and ramp
Semiconductor Industry Trends and What They Mean to CMP

Market Drivers and Transitions

Trend #1 – Continuing “Speedsters”

Trend #2 – The New Mainstream

Trend #3 – Emerging Devices

What Does All This Mean for CMP?
Challenging Realities:
• Continued consolidation and collaboration
• Reduce cost and mitigate risk
• Accelerate time to revenue
• Maximize responsiveness & ultimately financial return
Not surprisingly, materials targeted for CMP and photolithography (masks + PR) have highest growth rates

- Wet Chemicals
- Targets
- SiC*
- Quartz
- Ancillaries*
- Photoresist*
- Masks
- Graphite
- Gases
- CMP*
- Cu Plating*
- Interconnect*
- High k*
Pad Market Share Est. 2006

- Thomas West Inc.
- JSR
- PPG
- Others

- Rohm and Haas Electronic Materials

2007 CMP Pad Market Share

Pad Revenues ($M)

- 2004: $400
- 2005: $500
- 2006: $600
- 2007: $700

Industry Trends and CMP - July 2007
Oxide CMP Abrasives

Volumes Shipped (%)

Revenues ($M)

2002 2003 2004 2005 2006 2007

Colloidal Revenues
Fumed Revenues
Volume % Colloidal
How is any of this information useful?

Management decisions are influenced by certain perspectives and trends depending on business model and market segment.

<table>
<thead>
<tr>
<th>Speedsters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT</td>
<td>Willing to buy for new fabs or to retool existing fabs</td>
</tr>
<tr>
<td></td>
<td>Drive improvements in both capability and productivity</td>
</tr>
<tr>
<td>CONSUMABLES</td>
<td>Push performance in nearly every aspect of CMP</td>
</tr>
<tr>
<td></td>
<td>Defectivity is becoming an increasing focus</td>
</tr>
<tr>
<td>MATERIALS</td>
<td>Adapt existing materials whenever feasible, but …</td>
</tr>
<tr>
<td></td>
<td>Will not hesitate to integrate new materials when necessary</td>
</tr>
</tbody>
</table>
Decision Drivers

New Mainstream

| EQUIPMENT | Preserve capital and extend depreciated tools whenever possible
| | Buy tools only for "must have" capacity expansions
| | Generally staying focused on 200mm and below
| CONSUMABLES | Extreme focus on reducing cost per wafer
| | Defectivity and other factors to improve yield are also key
| MATERIALS | Adapt proven materials and process methods … period.
| | Optimize process flows for simplicity and yield

Emerging Technology

| EQUIPMENT | Preserve capital and minimize overhead
| | Outsourcing is a strong trend (fabless)
| | Generally start at small wafer sizes and work up to 200mm
| CONSUMABLES | Not locked in to "traditional" CMP pad/slurry offerings
| | Lots of small-volume niche opportunities
| MATERIALS | Willing to explore a wide range of materials for unique properties
| | Process requirements vary by several orders of magnitude

Thank you...
CMP = Chemical Mechanical Polishing (Planarization)

- Developed by IBM in late 1980’s. Licensed to and quickly adopted by both Intel and Micron in the early 1990’s
- Key manufacturing process required to planarize and smooth critical surfaces during manufacturing which improves device performance and yield

(a) Side View

(b) Top View

4 Basic CMP Steps – Newer Device

Industry Trends and CMP - July 2007

Pictures courtesy of Medtronic, Inc.
MPU and ASIC Interconnect Technology Requirements—Near-term Years

<table>
<thead>
<tr>
<th>Year of Production</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM ½ Pitch (nm) (contacted)</td>
<td>80</td>
<td>70</td>
<td>65</td>
<td>57</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>MPU/ASIC Metal 1 ½ Pitch (nm) (contacted)</td>
<td>90</td>
<td>78</td>
<td>68</td>
<td>59</td>
<td>52</td>
<td>45</td>
<td>40</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>MPU Physical Gate Length (nm)</td>
<td>32</td>
<td>28</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Number of DRAM metal levels</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Number of MPU metal levels</td>
<td>11+4</td>
<td>11+4</td>
<td>11+4</td>
<td>12+4</td>
<td>12+4</td>
<td>12+4</td>
<td>12+4</td>
<td>12+4</td>
<td>13+4</td>
</tr>
</tbody>
</table>