

1

Challenges and Opportunities in CMP Consumables – A Chemist's View

Yuzhuo Li Center for Advanced Materials Processing Department of Chemistry Clarkson University Potsdam, New York 13699 yuzhuoli@clarkson.edu

Some Interesting Questions

- At which technology node CMP will exhaust its usefulness?
- At which technology node copper will reach its limit as interconnect?
- What materials could/would be used to replace copper? Still need CMP?
- What practical considerations one must take for CMP consumables in 32 nm/450 mm processing?

Functions of CMP

Planarization

ODielectric (PMD and IMD) CMP, NiP CMP, etc

Formation of micro/nano structures
 OCu CMP, W CMP, STI CMP, MEMS CMP

Surface conditioning

○NiP, Sapphire, MgO, etc

Which function(s) of the CMP is most sensitive to technology node?

CMP Consumables

Slurry

Pad

pCMP clean solution

Pad conditioner

- Retainer ring
- Carrier film

Filters

Cu CMP Slurry Formulation Strategy

OPeroxides, persulfates, periodates, etc

• pH

Consider stabilizer stability and Pourbaix diagram

Complexing agent

Assist copper dissolution

Passivating agent

Suppress isotropic copper dissolution

"Abrasive" particles

Softer the better? What are the roles of particles?

Clarkson

defv convention

Technology Node and PS

6

Removal rate Step height reduction efficiency

Abrasive Particle Size

Surface Quality Defect count

Strong Chemical/Weak Mechanical

Clarkson

UNIVERSITY

defy convention

Weak Chemical/Mild Mechanical

	Image
Mean	-0.00
Sq	0.95
Sa	0.76
Peak/Valley	12.41
Skewness	-0.15
Kurtosis	3.02

7/25/2007

July 2007 CMPUG

When there is a balance

Representative results from past studies

	Image
Mean	0.00
Sq	0.78
Sa	0.62
Peak/Valley	6.59
Skewness	-0.07
Kurtosis	3.15

7/25/2007

July 2007 CMPUG

Importance of Abrasive Particles

No abrasive particles

3% 80 nm silica

7/25/2007

Optimal Particle Size?

7/25/2007

12

Functions of an abrasive

- To enhance the mechanical effect of a pad
 Minimum requirement in hardness?
 - OWhat about abrasive-free or abrasive-diet systems?

To serve as a carrier

- Chemically interact with pad, surface to be polished, and all slurry components
- Physically remove the polishing debris away from the surface
- Serve as a particulate lubricant
 - Well-known in classic tribology
 - O Special effects when the particles are in nanosize

Particulate adsorption

Notice the relative size ratio:

Abrasive particle/polishing debris

Cu

Passivation Film Formation

Where other things fit in here (complexing agent, surfactant, etc)

Interesting question

- Will higher MRR/SER ratio always translate to better SHRE?
 - Is it true that tougher the passivation film the better the SHRE?
- Case 1: non-BTA based passivating film, zero static etch rate, > 5000A/min MRR, no step height reduction efficiency
- Case 2: surfactant based passivating film, very low static etch rate (<50A/min), high removal rate (>5000A/min), SHRE < 30%

Kaufman Model

17

Pad No disconnect wafer Pad Polish debris \circ \circ \bigcirc \bigcirc \bigcirc wafer

Delamination model

No step height reduction or Increased step height "Trench" width slightly increased ₁₈

Slurry with Higher Viscosity Gives

slurry	Relative viscosity	SHRE (%)	Dishing at 100/100 um lines (A)
original	1.00	89	600
Original plus IPA	1.35	65	1200

Simulated linear velocity difference between the fluid in a recessed area and near the pad. The reduced flow, to certain extent, helps the preservation of the passivating film in the recessed area.

7/25/2007

Porous vs. Non-Cell Pads

Porous

25KU X298 189Am 8888 22 12 SET

Non-cell

Clarkson **NIVERSITY** Porous vs. Non-cell Pads

After breaking-in and conditioning

effect?

Due to Greater Heat Capacity?

Blanket wafer data as a function of pad life (contd.)

Pad temperature measurement

End-point times as a function of wafer number

Steady increase in the end-point times with the IC-1000 pad after wafer 300

Patterned wafer results

Planarization efficiency as a function of wafer number

Dishing as a function of wafer number

comparison to the IC-1000 pad

Reference: New unconditioned pad

MIP

: 45degrees

Mipox pad

After 1200 wafers

Magnification : X200

Angle

Reference

MD

Mipox pad

SURFACE IMAGE

Magnification : X50

Angle : 45c

: 45degrees

Image: Note of the second se

Potential advantages

Higher hardness and modulus values

 Improved pad-life
 Higher planarization efficiency and lower dishing

 Non-porous nature

 Feasibility of process development at lower flow-rates due to the non-porous nature
 Feasibility of rapidly changing slurry chemistry during Cu CMP process

For more information, see Mipox poster

Summary

- For technology node sensitive CMP processes, abrasive particle size will continue to reduce
 - Smaller the particle size, the true abrasiveness is reduced.
 - Larger the surface area, the surface adsorption property becomes more important
 - O The abrasiveness of these particles will be transmitted or express via the tips of the pads
 - Non-cell type pads may offer several potential advantages including longer life time