Role of Stress and Solution Chemistry for Reduced Damage During CMP of Ultra-Low-k Materials

July 17, 2007

Taek-Soo Kim¹, Katherine Mackie¹, Qiping Zhong², Maria Peterson², Halbert Tam², Tomohisa Konno³, and Reinhold H. Dauskardt¹

¹Stanford University, Stanford, CA 94305 USA ²JSR Micro, Inc., 1280 N. Mathilda Ave., Sunnyvale, CA 94089, USA ³JSR Corporation, Yokkaichi Research Center, 100 Kawajiri-cho, Yokkaichi, Japan

Reliable Processing of Interconnect Structures

Crack Driving Force

In the absence of chemically active environmental species, crack propagates if

$$G_{total} \ge G_c \ (J/m^2)$$

Environment-Assisted Cracking

In the presence of chemically active species, crack propagates even if

$$G_{total} < G_c \ (J / m^2)$$
 Kinetic fracture

Load Relaxation Crack Growth Technique

Relevance to CMP Damage

MRS Spring Meeting, 2007

Effects of Solution pH on Crack Growth

Alkali metal ion + crack tip \rightarrow decelerated crack growth by crack tip blunting

Crack tip gets blunted by dissolution of the silica backbone.

Silica gel dissolution in aqueous alkali metal hydroxides

Effects of Nonionic Surfactants on Defect Evolution during CMP

Surfactant additions critical for efficient CMP:

- enhances wetting of hydrophobic low-k dielectrics
- stabilizes CMP slurry
- optimized CMP removal rates, reduced dishing...

Effects of surfactant molecules on the defect evolution/crack growth are unknown!

Nonionic Surfactants: Polyoxyethylene Alkyl Ethers

	Mon	omeric	surf			
[CH ₃ (CH ₂) _{m-1} O(CH ₂ CH ₂ O) _n H					$C_m E_n$
Hydrop hydrocarbon	hobic chain	/ /				
Commercial name	# of C, <i>m</i>	# of EO, n	HLB	Molecular weight (g/mol)	Molarity of 0.1wt% surfactant solution (M)	
ETHALL DA-4		4	10.5	334	2.99 x 10 ⁻³	Hydrophilic-Lipophilic Balance (HLB)
DA-6	10	6	12.4	423	2.37 x 10 ⁻³	lipophilic 1 20 hydrophilic
DA-9		9	14.3	555	1.80 x 10 ⁻³	(oil soluble) $\leftarrow \rightarrow$ (water soluble)
ETHALL LA-4		4	9.2	363	2.76 x 10 ⁻³	
LA-7	10	7	12.2	495	2.02 x 10 ⁻³	CMC @25°C
LA-23	12	23	16.8	1200	8.34 x 10 ⁻⁴	BRIJ 76 [.] 4x10 ^{.3} wt%
LA-50		50	18.3	2389	4.19 x 10 ⁻⁴	BDI 1 78: 0 5v10-4 va/t%
BRIJ 76		10	12.4	711	1.41 x 10 ⁻³	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
78	18	20	15.3	1152	8.68 x 10 ⁻⁴	
700		100	18.8	4676	2.14 x 10 ⁻⁴	

$C_m E_n$ Effects on Crack Growth Behavior (in pH 7 NH₄OH)

Marked effect on crack growth Sensitive to hydrophilic chain length Marked effect on crack growth Insensitive to hydrophilic chain length No effect of surfactant molecules

$C_m E_n$ Effects on Crack Growth Behavior (in pH 10 NH₄OH)

Little effect of surfactant molecules

some effect on crack growth Insensitive to hydrophilic chain length

Marked effect on crack growth Sensitive to hydrophilic chain length

$C_m E_n$ Effects on Crack Growth Behavior (in pH 10 KOH)

Alkali metal ion + EO \rightarrow Complexation

EO of Polyoxyethylene Alkyl Ether

The EO chain locked by the cation, stabilzed by electron-rich oxygen atoms, decreases mobility

Crack tip blunting effects suppressed by shielding of potassium ion.

Also, complexation reduces hydrogen bonding sites $\downarrow \rightarrow G_{\text{bridging}} \downarrow$

Nonionic Surfactants: Surfynol 400 Series

m + n = number of moles of ethylene oxide (EO)

Commercial name	Surfynol 420	Surfynol 440	Surfynol 465	Surfynol 485
Ethylene Oxide Content				
Moles	1.3	3.5	10	30
Percent by Weight	20	40	65	85
Specific Gravity @ 25°C	0.943	0.982	1.038	1.068
HLB	4	8	13	17
VOC (Volatile Organic Compound) Content (wt %)	28	4	<0.01	<0.01
Molecular weight (g/mol)	284	381	667	1548
Molarity of 0.1wt% surfactant solution (M)	3.53 x 10 ⁻³	2.63 x 10 ⁻³	1.50 x 10 ⁻³	6.46 x 10 ⁻⁴

Nonionic Gemini (Dimeric) Surfactants Effects on Crack Growth Behavior

EO length: S420 < S440 < S465 < S485

Low foaming (defoaming) and rapid surface wetting → accelerated crack growth

Controlling Crack Growth Rate by Surfactant

Diffusion of Aqueous Surfactant Solutions into MSSQ

Diffusion of Aqueous Surfactant Solution (pH 7 $NH_4OH + 0.1wt\% C_{10}E_n$)

Diffusion of Aqueous Surfactant Solution (pH 7 NH₄OH + 0.1wt% $C_{12}E_n$)

Diffusion of Aqueous Surfactant Solution (pH 7 NH₄OH + 0.1wt% $C_{18}E_n$)

Diffusion Coefficient (pH 7 NH₄OH + 0.1wt% $C_m E_n$)

Commercial name	# of C, <i>m</i>	# of EO, n	HLB	Molecular weight, M (g/mol)	Diffusion coefficient, D (m²s⁻¹)
ETHALL DA-4		4	10.5	334	2.77E-12
DA-6	10	6	12.4	423	2.19E-12
DA-9		9	14.3	555	1.14E-12
ETHALL LA-4	12	4	9.2	363	3.12E-12
LA-7		7	12.2	495	2.4E-12
LA-23		23	16.8	1200	1.9E-13
LA-50		50	18.3	2389	7.8E-14
BRIJ 76		10	12.4	711	1.45E-13
78	18	20	15.3	1152	1.18E-13
700		100	18.8	4676	3.28E-14

$$x = \sqrt{Dt}$$

Polymer Reptation Theory

Polymer self-diffusion in polymer melts

 $D \sim M^{-2}$

Aqueous surfactant solution diffusion in nanoporous MSSQ

$$D \sim M^{-2}$$
 ?

Jones, Soft Condensed Matter, p. 92

Diffusion of Pure Surfactant in Liquid Phase $(C_{10}E_n)$

Diffusion of Pure Surfactant in Liquid Phase $(C_{12}E_n)$

Diffusion Coefficient (100wt% pure surfactant)

						0.1wt%	100wt%	6
1								
	Commerci al name	# of C, <i>m</i>	# of EO, n	HLB	Molecular weight, M (g/mol)	Diffusion coefficient, D (m ² s ⁻¹)	Diffusion coefficient, D (m ² s ⁻¹)	Hydrophobic tail length
	ETHALL DA-4		4	10.5	334	2.77E-12	2.72E-12	$D \sim [M^{1/2}C_m^{-2}]^{-3}$
	DA-6	10	6	12.4	423	2.19E-12	1.99E-12	$\int_{\alpha}^{\infty} 10^{-11} = 10^{-11}$
	DA-9		9	14.3	555	1.14E-12	1.44E-12	
	ETHALL LA-4		4	9.2	363	3.12E-12	7.67E-12	-2.99
	LA-7	12	7	12.2	495	2.4E-12	5.11E-12	
	LA-23		23	16.8	1200	1.9E-13		
	LA-50		50	18.3	2389	7.8E-14		$ \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	BRIJ 76		10	12.4	711	1.45E-13		$10^{-1} 1.5x10^{-1} 2x10^{-1} 2.5x10^{-1} 3x10^{-1}$
	78	18	20	15.3	1152	1.18E-13		M ^m C ^m _m (g ^m mol ^m m ²)
	700		100	18.8	4676	3.28E-14		

Increase of Carbon Content by Surfactant Diffusion

Atom %

 $C_{10}E_9$ pure surfactant in liquid phase

	(1)	(2)	(3)
Ο	27.97	42.88	47.82
С	41.30	23.84	22.27
Si	30.73	33.28	29.90

pH7 NH₄OH DI water

+ Ü	. 1wi% (1)	C ₁ 2) ⁹	(3)
0	36.63	45.76	46.01
С	35.80	21.61	21.15
Si	27.57	32.63	32.84

Gibbs-Marangoni Effects

In foams, the Gibbs-Marangoni effect provides a resisting force to the thinning of liquid films.

$$G_{tip} = G_{applied} - G_{bridging}$$

╅╅╧╧╧╧╧╧╧╧

Higher local surface tension developed

Action of elasticity pulls back surfactant molecules into thinned section

Returning surfactant molecules drag back underlaying layers of liquid with them

Surface film repaired by surface transport mechanism

Schramm, 2000

Conclusion

- The growth of damage is a kinetic process involving stress <u>and</u> the presence of active chemical species.
- Careful surfactant additions can control the defect evolution.

Accelerated crack growth

No effect of surfactant additions

Suppressed crack growth

Thank you!

Q&A

