ROHM A ELECTRONIC MATERIALS
tHARAS CMPTECHNOLOGIES

Advances in CMP Fundamental Understanding and
Applications to Consumable and Process Design

Gregory P. Muldowney, Carolina L. EImufdi
& A. Scott Lawing*

R creating the
M flawless surface
wil "EL L

Technology = Consistency = Productivity

.........



Introduction

Contact Area Measurement and Modeling
Fundamental understanding
Ex: Sub-pad effect
Rational consumable design
Ex: Low Stress Polishing
Process Fundamentals: Backmixing
Backmixing criteria

Backmixing process response
Uniformity
Defectivity

Pattern transfer

Pad & Conditioning Process Design: VisionPad ™5000 Polishing
Pad for STI
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Point Contact Area and Pressure

= Elimination of defects is more effectively achieved by elimination of
high contact pressures
_ P,
Applied .
Pc — AC << A\/\/afer = F)C >> I:)Applied

Very large P,
damages surface

CMP Pad

= Breakthrough increases in pad-wafer contact area will reduce defects

even with no change in applied downforce or coefficient of friction
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Contact Shape vs. Cross-Section

_ _ | 10 um wafer
T N ' dhet o \ ' displacement

Simulated Contact Shape: Simulated Contact Shape: Cross-Sectional Area
Top Pad Only Top Pad + Sub-Pad

= Difference between contact area and cross-section is observed at all scales

= Difference between contact area and cross-section is strikingly larger when
a sub-pad absorbs most of the displacement
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Low-Stress CMP for Emerging Devices
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Bulk Si
Alternatives

Interconnect & Architectures

Materials

=  New materials to planarize == Novel slurry chemistries

= Unforgiving error budgets mmmm)> \Vafer-scale pad flatness

=  Fragile device structures s> LoOw-stress planarization
>

= Low defect tolerance Low-stress planarization!
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Contact State Determines Defectivity
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Scratch Defect Counts in Cu Barrier CMP at 1.5 psi
AMAT Mirra® Polisher, 93/87 rpm, LK393C4 slurry

Defects approach zero as contact pressure drops to same order of
magnitude as applied pressure

There is no general trend of lower defects at lower COF across pad
types
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CMP Defects vs. Contact Pressure
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Contact Pressure - psi
= Point contact pressure has emerged as a key driver of scratch defects
= High-contact pads are an ongoing R&D focus to provide low-stress polish
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Process Fundamentals: Backmixing
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Backmixing Effect in CMP Tracer Experiments

Results for IC1000
Pad with Circular Grooves

<_\

Bow
Wave

/ Fluid

Inlet

\

Bow
WEE

/ Fluid

Inlet

-

Backmixed Area — Non-Backmixed Area
Conveys Tracer

Resists Tracer Media
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Tracer
Media

= Backmixed region resists fresh slurry influx for many wafer rotations
= Non-backmixed condition conveys slurry across full wafer track
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Slurry Backmixing Criteria

= Backmixing affects wafer over
width w* at edge:

w =R, —

= For wafer to be unaffected
by backmixing (w* = 0):

R-R
QWSQP( W]
RW

= For Ry /R of 0.7-0.8, need
/€2, > 2.5 to avoid backmixing

= Larger wafers (higher R,,/R)
make backmixing more likely
and affected width w* greater
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Effect of Backmixing on Steady-State Concentration Field
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Case:

Pad 33 rpm

Polish Pressure 3 psi
Medium Conditioning

Flat 43 um Gap 25 rpm 33rpm 61 rpm

Wafer Surface ROHM
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Effect of Backmixing on Steady-State Temperature Field

Areaicm
Detalil

Slurry
Temperature
°C) . -
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- .
32
31
30
29
28
27
26
25
24
23
22
21
20
Case:
Pad 33 rpm .
Polish Pressure 3 psi i
Medium Conditioning =
Flat 43 pm Gap 25rpm 33rpm 61 rpm

Wafer Surface "
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Effect of Backmixing on Wafer Edge Profiles

Mirra® Tool — Platen 2
Platen Speed = 33 rpm -
Slurry Flow = 80 ml/min

IC1010™ on Suba®

No Backmixing
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—m—CS=12, P=2,NOSC [
—m—CS=12, P=3, NOSC
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\\\:\ i —a—CS=61, P=2, NOSC
! 1

Data from CDE ResMap168
10-mm Edge Exclusion

Cu Film Thickn

4500 \; —a— CS=33, P=3, NOSC———
DY /
4000 - T Cs = Ig)alr.ri(;rspeed, rpm .
n = Polish Pressure, psi
BaCkaXIng OSC = Oscillating Carrier
3500 - NOSC = Non-Oscillating Carrier
3000 T T T T T T T
80 82 84 86 88 90 92 94

Distance from Wafer Center, mm

= No-backmixing improved edge profiles regardless of polish pressure
= Reflects more consistent transport in absence of reverse slurry flow
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Effect of Backmixing on Uniformity Optimization

3646.22 - Pe§|rablllty functions
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Effect of Backmixing on Uniformity Optimization

3000 —
2800 - New Processes (No Backmixing):
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More control is obtained over center-to-edge profile at high platen
speed/carrier speed ratio

Technology = Consistency = Productivity RO SrCTRONIC HATERIALS



Origins of Scratch Defects
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Area of of Rotation of Rotation
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Slurry renewal is slow
near pad center due
to reverse motion of
wafer, allowing debris
to collect and recycle
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Fraction of

Agglomerated debris Spent Slurry

and particles ejected
from groove may
inflict scratch defects

Sample e Polish Debris
Particle Tracks in D
Pad-Wafer Gap =

Spiral grooves renew Polishing Particles

slurry more effectively
at pad center to arrest
this defect mechanism  Agglomeration
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Effect of Backmixing on Cu Defectivity
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Mirra® Tool — Platen 2

Platen Speed = 33 rpm
Slurry Flow = 80 ml/min
IC1010™ on Suba®
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= No-backmixing improved defect counts by 25% at 3 psi pressure

= Pad rotation conveys away spent particles and polish debris faster
than wafer rotation can recapture them
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Groove Pattern Transfer

Pad \<Table Rotation

Wafer Rotation

Wafer Oscillation

Circular

Grooves .
Dual-Axis F{/T/'S][‘ed
Rotary arer
Polisher

= Rotation/oscillation exposes point on wafer to many points on pad

= Off-center position exposes wafer to all angles with respect to pad
surface and grooves

= Despite motions, wafer is imprinted with rings matchigg_lgroove pitch

ELECTROMIC MATERIALS
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Porous IC1000™ Pad

With Carrier Oscillation | Without Carrier Oscillation

+53.1 +56.3




200-mm Wafer
PS/CS =0.85 PS/CS =0.67
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Pad Conditioning & Process Design:.
VisionPad ™ 5000 for STI
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Advanced Pad Roadmap

Node Process Technology
Logic :
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Conditioner Design, Natural Porosity & Pad Texture Evolution

0.04 -

Natural porosity of pad + 0.02

Pad Surface Height Pad Surface Profile ~ 0.2

Distribution 5 o Conditioning Held Constant;‘
> o0 ] \
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Changes in porosity drive Pad Height
these statistics

Changes in conditioner design

Cutting behavior of conditioner = drive these statistics
\
Pad Surface -~ 008
0077 — High Cut Roughness s

2 0.06
0.057
0.04+
0.03+
0.02+
0.01+
0
Final pad surface is the product of the inherent pad texture Pad Height
(porosity) and the conditioner cutting characteristic (near il 5 = G
surface roughness)

Each pad-conditioner combination will have a unique (intrinsic)
surface structure

Low Cut Roughness

Porosity Held Constant

Pad Bulk Material

Probability Densit

Final pad surface statistics

Cut rate, cutting characteristics and the resulting near surface Manipulating the size, shape and density of
roughness can be driven over a large range through conditioner :Ir?éncourﬁ:t?: ;38)5(‘”93 cutting characteristics

design
Technology = Consistency = Productivity ST RO I LeCTRONIC HATERIALS



Conditioning for Textural Compatibility

Compatible

VisionPad 5000 + SPD01 W
® QQQO OOQOQ

(Cutting depth < porosity depth) g%) OF
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SSHAOE " |[E8EBE560

098%)00000 \
Too Deep Ww

VisionPad 5000 + 181060 (=000
(Cutting depth > porosity depth) g%g%g)g C%)Q %OQ

OO )OO0

Materials with different pore structures require conditioning
tailored to their specific porosity

Incompatible conditioning results in a disruption of the natural
porosity of the material
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Example: 1C1000, VisionPad 5000, NSPDO1 & 181060
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The natural porosity of IC1000 is compatible with both 181060 and SPDO1

Note that the negative tail of the distribution is unaffected by conditioning indicating
that the natural porosity is intact in both cases

The natural porosity of VisionPad 5000 is incompatible with 181060 and
compatible with SPDO1

Note that the combination of VisionPad 5000 & 181060 results in a widening of the
negative tail of the distribution indicating that the natural porosity of the material has
been disrupted
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Performance Comparison

Dishing on 500 um feature

. 1.00 1
0.95
0.8 )
T 090
8o
0.6 -
@ 0.85
Ie)
0.4 O 0.80
02 075 .
0 0.70 7 T T
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5000/CG181060 5000/CG181060

Pad Type (Conditioner Type) Pad Type (Conditioner Type)

Data from STI Polishing with Celexis™ CX97S slurry

Dishing and polish rate are significantly improved with the
VisionPad 5000/SPDO01 combination
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Conclusions

Rohm and Haas Electronic Materials has a comprehensive CMP
fundamental research program in place
This research program is designed to provide rational guidance
for product and process design
Some highlights reviewed here include:

Fundamental aspects of pad-wafer contact mechanics

Process interactions

Next generation pad design
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