

Advances in CMP Fundamental Understanding and Applications to Consumable and Process Design

Gregory P. Muldowney, Carolina L. Elmufdi & A. Scott Lawing*

creating the **flawless** surface

Introduction

- Contact Area Measurement and Modeling
 - Fundamental understanding
 - Ex: Sub-pad effect
 - Rational consumable design
 - Ex: Low Stress Polishing
- Process Fundamentals: Backmixing
 - Backmixing criteria
 - Backmixing process response
 - > Uniformity
 - Defectivity
 - Pattern transfer
- Pad & Conditioning Process Design: VisionPad ™5000 Polishing Pad for STI

Contact Area Measurement and Modeling

Muldowney & Elmufdi

creating the **flawless** surface

Point Contact Area and Pressure

 Elimination of defects is more effectively achieved by elimination of high contact pressures

 Breakthrough increases in pad-wafer contact area will reduce defects even with no change in applied downforce or coefficient of friction

Contact Shape vs. Cross-Section

- Difference between contact area and cross-section is observed at all scales
- Difference between contact area and cross-section is strikingly larger when a sub-pad absorbs most of the displacement

Low-Stress CMP for Emerging Devices

- New materials to planarize
- Unforgiving error budgets
- Fragile device structures
- Low defect tolerance

Novel slurry chemistries

Wafer-scale pad flatness

Low-stress planarization!

Contact State Determines Defectivity

Scratch Defect Counts in Cu Barrier CMP at 1.5 psi AMAT Mirra® Polisher, 93/87 rpm, LK393C4 slurry

- Defects approach zero as contact pressure drops to same order of magnitude as applied pressure
- There is no general trend of lower defects at lower COF across pad types

CMP Defects vs. Contact Pressure

Point contact pressure has emerged as a key driver of scratch defects

High-contact pads are an ongoing R&D focus to provide low-stress polish
 Technology - Consistency - Productivity

Process Fundamentals: Backmixing

Muldowney (Additional data by Lawing)

creating the **flawless** surface

Backmixing Effect in CMP Tracer Experiments

- Backmixed region resists fresh slurry influx for many wafer rotations
- Non-backmixed condition conveys slurry across full wafer track
- Technology Consistency Productivity

Slurry Backmixing Criteria

 Backmixing affects wafer over width w* at edge:

$$w^* = R_W - \frac{R}{1 + \frac{\Omega_W}{\Omega_P}}$$

• For wafer to be unaffected by backmixing $(w^* = 0)$:

$$\Omega_{W} \leq \Omega_{P} \left(\frac{R - R_{W}}{R_{W}} \right)$$

- For R_W/R of 0.7-0.8, need $\Omega_P/\Omega_W > 2.5$ to avoid backmixing
- Larger wafers (higher R_W/R) make backmixing more likely and affected width w* greater

Effect of Backmixing on Steady-State Concentration Field

Effect of Backmixing on Steady-State Temperature Field

Effect of Backmixing on Wafer Edge Profiles

- No-backmixing improved edge profiles regardless of polish pressure
- Reflects more consistent transport in absence of reverse slurry flow
 ROHMENT ELECTRONIC MATERIALS
 CONSISTENCY Productivity

Effect of Backmixing on Uniformity Optimization

Effect of Backmixing on Uniformity Optimization

More control is obtained over center-to-edge profile at high platen speed/carrier speed ratio

Origins of Scratch Defects

- Slurry renewal is slow near pad center due to reverse motion of wafer, allowing debris to collect and recycle
- Agglomerated debris and particles ejected from groove may inflict scratch defects
- Spiral grooves renew slurry more effectively at pad center to arrest this defect mechanism
 Technology - Consistency - Productivity

Effect of Backmixing on Cu Defectivity

- No-backmixing improved defect counts by 25% at 3 psi pressure
- Pad rotation conveys away spent particles and polish debris faster than wafer rotation can recapture them

Groove Pattern Transfer

- Rotation/oscillation exposes point on wafer to many points on pad
- Off-center position exposes wafer to all angles with respect to pad surface and grooves
- Despite motions, wafer is imprinted with rings matching groove pitch
 Technology Consistency Productivity

Porous IC1000[™] Pad

Ter

Effect of Backmixing on Pattern Transfer

Pad Conditioning & Process Design: VisionPad[™] 5000 for STI

creating the **flawless** surface

Lawing

Advanced Pad Roadmap

Conditioner Design, Natural Porosity & Pad Texture Evolution

 Cut rate, cutting characteristics and the resulting near surface roughness can be driven over a large range through conditioner design

ROHM 📩

ELECTRONIC MATERIALS CMPTECHNOLOGIES

Conditioning for Textural Compatibility

- Materials with different pore structures require conditioning tailored to their specific porosity
- Incompatible conditioning results in a disruption of the natural porosity of the material

Example: IC1000, VisionPad 5000, NSPD01 & 181060

The natural porosity of IC1000 is compatible with both 181060 and SPD01

- Note that the negative tail of the distribution is unaffected by conditioning indicating that the natural porosity is intact in both cases
- The natural porosity of VisionPad 5000 is incompatible with 181060 and compatible with SPD01
 - Note that the combination of VisionPad 5000 & 181060 results in a widening of the negative tail of the distribution indicating that the natural porosity of the material has been disrupted

Performance Comparison

■ Data from STI Polishing with Celexis[™] CX97S slurry

Dishing and polish rate are significantly improved with the VisionPad 5000/SPD01 combination

Conclusions

- Rohm and Haas Electronic Materials has a comprehensive CMP fundamental research program in place
- This research program is designed to provide rational guidance for product and process design
- Some highlights reviewed here include:
 - Fundamental aspects of pad-wafer contact mechanics
 - Process interactions
 - Next generation pad design