Modeling Layout Dependant Within die Non-uniformity In High Selectivity STI CMP

Jihong Choi¹, David Dornfeld¹ and David Hansen²

¹ University of California at Berkeley ²Cypress Semiconductor Corp.

CMPUG, June 21

Motivation

This is still observed in high selectivity STI CMP process

A robust model for CMP and deposition process optimization, layout design rule checking, pattern density equalization, process control, and circuit impact analysis

High Selectivity Slurry

Ceria Powder plus Surfactant: Oxide and Nitride selectivity plus reduced polishing in low areas

Experimental

- Test Pattern

- Trench depth : ~ 4300 Å
- Trench width : $0.1\mu m \sim 9\mu m$
- Trench aspect ratio : up to 4.3
- Pattern density : 0.1 ~ 0.8
- HDP-CVD Oxide Deposition
- Large features (~65µm) for optical measurement (spectrophotometer)

- Oxide Deposition : HDP-CVD
- CMP: 200mm tool, High selectivity (~100:1) slurry

- **Metrology :** 3 dies per wafer for comparison, spectrophotometer at large features over a die, stylus profiling over die for die scale profile

Pattern Dependency in Oxide Removal

Even with high selectivity slurry, strong pattern dependency is still observed

Pattern Dependency in Nitride Erosion

Within die variation : ~80 Å

oxide removal rate

Within die variation is very small, but pattern dependency is still observed

Nitride erosion map is not matching with oxide removal rate map => feature effect after the end point should be considered

Initial Topography of CMP

Initial Topography of CMP

HDP-CVD Oxide Topography

PD =

H = fn(LW, LS, d, HDPCVD process parameters (sputtering/deposition ratio))

Empirical Modeling for Oxide Topography

Topography Mapping Using Empirical Model

Pattern density

Line space

Be

Variation of Real Pattern Density during Polishing

Real pattern density cell 3 1 cell 3 cell 2 LPD2 LPD1 cell 1 cell 2 cell 1 а Ζ b c ď maximum oxide thickness

LW = 0.112 nm LS = 1.008 μm Before CMP

After 40sec CMP

c:\documents and settings\ibm user\desktop\afm data files\shantanu\sti\afte

H : ~ 1250 Å

Before CMP

After 40sec CMP

c:\documents and settings\ibm user\desktop\afm data files\shantanu\sti\afte

H: ~ 140 Å

H :~ 550 Å

LW = 0.112 nm LS = 0.261 µm Before CMP

H: ~ 450 Å

After 40sec CMP

c:\documents and settings\ibm user\desktop\afm data files\shantanu\sti\afte

H: ~ 180 Å

LW = 0.112 nm LS = 0.168 µm

H: ~ 500 Å

After 40sec CMP

c:\documents and settings\ibm user\desktop\afm data files\shantanu\sti\afte

H: ~ 200 Å

Variation of Real Pattern Density during Polishing

CMP Model : Hertzian Contact

 $\boldsymbol{\mathcal{E}}$: asperity – wafer topography engagement length

A pad surface model

$$A = \pi a^{2} = \frac{\pi \varepsilon}{\kappa_{s}} \qquad : \text{ contact area}$$
$$F = \frac{4}{3} E^{*} \kappa_{s}^{-1/2} \varepsilon^{3/2} \qquad : \text{ contact force}$$
$$P_{m} = \frac{4}{3\pi} E^{*} \kappa_{s}^{1/2} \varepsilon^{1/2} \qquad : \text{ mean contact pressure}$$

where,
$$\frac{1}{E^*} = \frac{1 - v_{pad}}{E_{pad}} + \frac{1 - v_{film}}{E_{film}}$$

CMP Model : Mean Asperity Contact Force

Mean Asperity Contact Force:

Wafer-pad distance : force balance

Modeling Details

Model Test with Large Feature Test Pattern

Test structure :

Model vs. experiment :

Local contact pressure,

$$C_F(x, y) = \int_A P(r) \cdot \{\rho_{\text{nominal}}(r) dA\}$$

 $P(x, y) \cong P(0)$

In case of large step height, sudden change of topography height or sharp features ;

Significant modification of local contact pressure is required

Edge Factor

Effective Local Contact Pressure = ($\alpha + \beta \times \text{Edge Factor}$) × P_{local}

Edge Factor Effect

1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 -1.5 -1.5 -2 L 0 -2∟ 0 20 40 60 80 100 120 20 40 60 80 100 120 $\alpha : \beta = 1 : 10$ $\alpha : \beta = 1 : 100$ 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 -1.5 -1.5 -2 L 0 -2 L 100 20 40 60 80 120 20 40 60 80 100 120 $\alpha : \beta = 0 : 1$ $\alpha : \beta = 1 : 1000$

Time Variation of the Edge Factor

As polishing goes on, sharp features become smooth, edge factor decreases.

Simulation Procedure

3D Simulation Example

R=500µm

R=100µm

Conclusions

- Strong pattern dependency is still observed in high selectivity STI
- Pattern dependent HDP-CVD profile was examined
- High step heights from HDP-CVD process initially exist in STI CMP process

To address this, a new chip scale model with the concept of edge factor is under development

Future Work

- Model calibration with HDP-CVD topography input is still underway
- Chip Scale HDP-CVD Model (Trench width, trench aspect ratio, sputtering/deposition ratio vs. over burden oxide topography)
- Model test with production wafer
- Investigation of the effect of consumables on CMP model parameters
- Optimization strategy for HDP-CVD +CMP process

Acknowledgement

UC Discovery Grant, Feature Level Compensation and Control Project

Cypress Semiconductor corp.

