

CMP *n*Hancement Applications Using ViPRR Carrier Technology

Lily Yao, Bill Kalenian, Larry Spiegel, Bryan Sennett, Mike Kirkpatrick

bkalen@strasbaugh.com

Discussion agenda

- Strasbaugh Introduction
- ViPRR Carrier Technology & CMP nHancement Program
- ViPRR & CMP nHancement Applications
 - IC Manufacturing
 - Thin Film Head (TFH) Manufacturing
 - Failure Analysis (FA)
 - Research & Development

• Summary

Strasbaugh Introduction

1

Strasbaugh Introduction

- Founded in 1948, Strasbaugh has more than 50 years experience designing, innovating and manufacturing precision surfacing systems
- Over 15,000 polishing and grinding systems manufactured to date
- Over 45 models available today for use in diverse hightechnology markets
- Headquarters in San Luis Obispo, California Representation throughout the world

Strasbaugh CMP Product Line

ViPRR Carrier Technology and CMP *n*Hancement Program

ViPRR Wafer Carrier

• Strasbaugh first introduced ViPRR Carrier in 1997

- Design featured ball & socket gimbal mechanism, post in hole rotational drive, and a pneumatic retaining ring
- Since then, Strasbaugh has released a series of ViPRR carriers, including ViPRR II, III, and most recently the ViPRR IV Carrier
- ViPRR IV has been successfully implemented for a variety of wafer sizes on both Strasbaugh CMP machines as well as IPEC 372 and 472 polishers.
- The IPEC ViPRR IV and related control hardware have been named:

"CMP *n*Hancement" or "CMPE"

ViPRR IV Wafer Carrier

ViPRR IV Carrier Design Features

Projected gimbal

 Improves wafer to pad alignment for enhanced CTE uniformity, slurry distribution, edge exclusion, increased resistance to vibration, and flatter retaining ring wear

• Pneumatically-controlled ViPRR retaining ring

 Pre-compresses polish pad ahead of the wafer, controlling pad rebound effect and improving uniformity to 3mm edge exclusion or better

• Angular pick-up

 Prevents "suction cupping" at the polish pad during wafer pick-up

ViPRR IV Carrier Design Features

• Zone back pressure

 Controls center to edge uniformity using two or three zones of control

• Few moving parts

 For higher reliability, simplified carrier maintenance, and extended process stability

• Grooves in the retaining ring

 Improves slurry distribution, reduces heat generation at polish pad

• Proven in production

Original VIPRR I carrier released in 1997

ViPRR- Zone Back Pressure

- Allows air back pressure to be applied selectively to circumferential zones within the carrier
- Provides air cushion and pressure between wafer and carrier backing film in order to improve center-to-edge WIWNU
- ViPRR's design allows precisely controlled back pressure to be applied to the wafer through the backing film

ViPRR- Pneumatic Retaining Ring

Rem Within-Wafer-Non-Uniformity					
	5mmEE	3mmEE	2mmEE	1mmEE	
Test 1	8.89%	10.62%	11.85%	12.96%	
Test 2	6.43%	8.95%	9.76%	11.85%	
Test 3	2.92%	4.13%	6.82%	8.65%	
Test 4	1.96%	3.06%	4.65%	7.51%	

ViPRR / IPEC Carrier Comparison

Strasbaugh ViPRR Carrier	IPEC Carrier	
Zone back pressure uniformity	No zones for	
control and air cushioning	uniformity control	
Pneumatically controlled	No edge exclusion	
retaining ring force	technology	
	O-ring & T-bar	
Low friction projected gimbaling	rotation cause friction	
and drive mechanisms	in gimbal	
Center of gimbal at pad/wafer	Gimbaling occurs	
interface	above the pad	
Simple backing film installation	No backing film	
using alignment pins	alignment method	
	Legacy technology	
Advanced materials for	using legacy	
reliability and durability	materials	

ViPRR and CMPE Application Data

ViPRR CMPE, Oxide Production Application

TFH CMP Using ViPRR Carrier

- As dimensions in thin film magnetic read/write heads become smaller, the CMP process has become critical to the manufacturing-process:
- Lower layer CMP
 - Smooth Al2O3 surface on AltiC substrate
 - Smooth, defect-free surface (Al2O3 & NiFe) for reader trackdefinition photolithography control
- Upper layer CMP
 - OC CMP CMP (Al2O3 and Cu) to open up Cu studs for gold bond pads plating

TFH CMP Using ViPRR Carrier

- Lower layer surface roughness (Ra) results:
 - Pre surface Ra=3nm;
 - Post CMP Ra<0.2nm
- Upper layer Step Height (SH) results:
 - Pre SH ~5um;
 - Post SH<0.02um</p>
- Blanket monitor ThK variation 1σ results:
 - WIW = 60nm
 - WTW = 40nm

FA – WWD Applications Using ViPRR

- FA is widely used in IC manufacturing to shorten yield learning cycles
- Previous FA sample preparation methods had shortcomings:
 - RIE/wet etch processes resulted in planarity/topology control loss
 - Grinding (mechanical polishing) was a very slow process
 - Samples often prepared one die at a time
 - Could take up to a week to prepare a wafer for analysis

FA – WWD Applications Using ViPRR

- Whole wafer deconstruct (WWD) using CMP technology was developed to reduced sample preparation time, allowing much quicker response time, throughput, and lower cost.
 - ViPRR added the necessary process improvements for uniformity (within wafer and die)
 - Sample preparation time reduced from days to hours
 - The advantage of quickly preparing wafers for FA has been recognized and has contributed much to the success of yield ramping

With carrier cont

Silicon Haze Removal Using ViPRR & ZBP

• Example 1- Center fast

- Set Zone 1 (outer) = Low pressure
- Set Zone 2 (inner) = High pressure

• Example 2- Edge fast

- Set Zone 1 (outer) = High pressure
- Set Zone 2 (inner) = Low Pressure

Silicon Haze Removal Using ViPRR and ZBP

Example 3- equal removal across wafer

 Back pressure zones 1 and 2 are optimized for uniform Silicon removal

ViPRR for R&D Applications

STRASBAUGH

Summary

~/

Summary

- Strasbaugh's ViPRR carrier technology has been successfully implemented on Strasbaugh and IPEC CMP equipment for many polishing applications including:
 - IC production applications
 - TFH fabrication
 - Whole Wafer Deconstruct for FA
 - Si primary wafer applications
 - MEMS
 - R&D (slurry, pads, film materials, substrate, etc.)
- ViPRR carrier technology has functioned well for many wafer sizes from as small as 75mm up to 300mm

Summary

- The VIPRR IV design combines ZBP, spherical gimbal, and wafer edge profile control that has yielded state of the art WIWNU performance at an edge exclusion of less than 3mm for many applications
- VIPRR IV's projected gimbal design provides improved carrier stability and performance and reduces vibration in high friction processes
- The CMPE program has extended the useable life of many IPEC 372 and 472 polishers, bringing up-to-date carrier performance to a solid platform.

