Advanced Diamond Solutions

## **PolyCrystalline Diamond Conditioners for Dressing CMP Pads: An Enabling Technology for Manufacturing Future Semiconductor Devices**

CMP Users Group April 12, 2006

James C. Sung Cheng-Shiang Chou Barnas G. Monteith Michael Sung



#### Future Needs of the Semiconductor Industry

**New design challenges for CMP conditioning:** 

- Features are becoming very small (< 65 nm)</li>
- Copper is soft; dishing problems
- Low-k dielectrics are fragile
- Slurries can corrode conditioners; contaminants
- Diamond fall-out a continual problem
- Surface variations from conditioners reduce process repeatability

Advanced Diamond Disk (ADD): Revolutionary polycrystalline diamond pad conditioner with improved polishing and uniformity characteristics

- Cutting tips formed directly from the PCD conditioner substrate
- Precise control over the cutting tip patterning and height variation
- Removal rate uniformity, extended pad life, and lower defect rates



### **CMP Diamond Disk Evolution**

1 st Gen





# **Tip Height Variation & Cutting Patterns**





### Patterning Polycrystalline Diamond Substrate







# **Conditioner Design Specifications**

|                  | Current Gen                | ADD               |
|------------------|----------------------------|-------------------|
| Diamond Leveling | $> 50 \ \mu \mathrm{m}$    | $<$ 20 $\mu$ m    |
| Dressing Rate    | $> 50 \ \mu \mathrm{m/Hr}$ | $<$ 20 $\mu$ m/Hr |
| Working Crystals | < 10%                      | > 90%             |
| Diamond Shape    | Irregular                  | Symmetrical       |
| Diamond Angle    | $>100^{\circ}$             | < 90°             |
| Dressing Stress  | Large (Tearing)            | Low (Cutting)     |
| Pad Life         | Short                      | Long              |
| Disk Life        | Short                      | Long              |
| Asperity         | Random                     | Uniform           |
| Uniformity       | Low                        | High              |



#### Consistent Removal Rate and Polish Uniformity





### Pad Cut Rate vs. Polishing Rate





#### Control Over Cutting Tip Geometry and Height Variation









### **Dressing Rate as a Function of Tip Geometry**





# **Controlled Asperities for Process Uniformity**





### Surface Refinishing to Reclaim Used Conditioners





#### Summary of Benefits

- Controlled PCD cutting tip geometry and protrusion results in excellent pad dressing
- Consistent and efficient removal rates combined with gentler polishing is ideal for small critical features and for process uniformity
- Improved process performance allows for lower defect rates and increased wafer yields
- High PCD cutting tip retention means absolutely no diamond dropout
- Customizable cutting tip geometries means these pads can work for any wafer polishing specification
- Extended pad life and novel ability to refinish cutting tips on each pad leads to increased product life and reduced cost of ownership
- Pure diamond substrate conditioner results in superior chemical resistance to acidic slurries and compatible with tungsten and copper processes



### For More Information

# Advanced Diamond Solutions, Inc. www.advanceddiamond.com msung@advanceddiamond.com