Process Characterization of CMP Consumables

by

Robert L. Rhoades, Ph.D.

Presented to NCCAVS CMP Users Group
June 1, 2005
Outline

Why is CMP process characterization important?

Levels in typical project execution order
- Level 1: Screening
- Level 2: First pass optimization
- Level 3: Baseline performance
- Level 4: Fine tuning and process sensitivities

Examples

Comments and conclusions
Why Bother?

Historical approach ...
- Consumables companies focused on just the product … let the fabs figure out how to use it on their devices
- Only required a small data package for “proof of concept”
- Partnered with an “alpha site” to finish debugging

Today …
- Marketplace is demanding more complete data packages
- Fabs are less willing to commit long-term engineering resources to unproven products
- Fewer fabs are willing to “be the first”
- Strong competition for nearly every aspect of consumables
CMP Process Complexity

Wafer Parameters
- Size / Shape / Flatness
- Film Stack Composition
 - Metals (Al, Cu, W, Pt, etc.)
 - Oxide (TEOS, PSG, BPSG, etc.)
 - Other (polysilicon, low-k polymers, etc.)
- Film Quality Issues
 - Stress (compressive or tensile)
 - Inclusions and other defects
 - Doping or contaminant levels
- Final Surface Requirements
 - Ultralow surface roughness
 - Extreme planarization, esp. Copper
 - Low defectivity at <0.12 um defect size

Process Issues
- Long list of significant input variables
 - Downforce
 - Platen speed
 - Carrier speed
 - Slurry flow
 - Conditioning method
 - Disk used (material, diamond size, spacing, etc)
 - Force
 - Speed
 - Sweep profile
- Highly sensitive to local pattern variation
- Must maintain consistency at high throughput
- Must optimize for variation of incoming films

Integration Issues
- Materials Compatibility
 - Electrochemical interactions with two or more metals
 - Film integrity and delamination, esp. low-k
 - Film stack compressibility
- Interactions with adjacent process modules
 - Photolithography
 - Metal deposition and metal etch
 - Dielectric deposition and etch
- Electrical design interactions
 - Feature size constraints
 - Interactions with local pattern density
 - Line resistance variation, esp. damascene copper
 - Dielectric thickness variation
 - Contact resistance variation

Pad Issues
- Materials (polyurethane, felt, foam, etc.)
- Properties must be chosen for the job
- Conditioning method must be optimized
- Lot-to-lot consistency

Slurry Issues
- Chemistry optimization often required
- Mixing and associated inconsistency
- Shelf life and pot life sometimes very short
- Slurry distribution system (design, cost, upkeep)
 - Agglomeration and gel formation
 - Filtration is often required
- Cleaning method specific to slurry and film
- Waste disposal and local regulations
Level 1: Screening

| Typical Project Status | Early screening trials
| | New pad or slurry formulations
| | New materials or device integration schemes
| Typical Metrics | Removal rate
| | Visual indication of surface quality
| Testing Inputs and Constraints | Choose 1 or 2 primary metrics
| | Focus on rapid cycles of learning
| | Keep iterations low to minimize cost per trial
| | Simplest test conditions to still give valid comparison
| Goal | Sufficient data to determine most likely candidates to continue with targeted 1st round optimization

Level 2: First Pass Optimization

| Typical Project Status | Initial screening complete
| | Top two alternatives chosen for further development |
| Typical Metrics | Removal rate and uniformity
| | Microscopic surface quality (roughness, scratches, etc.)
| | Initial patterned wafer response (if applicable) |
| Testing Inputs and Constraints | Broader range of metrics
| | Measure all metrics under same process conditions
| | Include issues of process implementation (breakin, etc.)
| | Expect iterations with formulation |
| Goal | Data that meets all required targets for at least a small
| | series of wafers and justifies time/expense of a baseline marathon run |
Level 3: Baseline Performance

| Typical Project Status | All formulations frozen (even if temporarily)
<table>
<thead>
<tr>
<th></th>
<th>Process stability implied and remaining to be proven</th>
</tr>
</thead>
</table>
| Typical Metrics | Removal rate and uniformity plus selectivities (if needed)
| | Microscopic surface quality (roughness, defects, etc.)
| | Patterned wafer or prime wafer response over time
| | Defect performance and detailed characterization |
| Testing Inputs and Constraints | Full range of metrics that a target customer will expect
| | Measure all metrics under same process conditions
| | Maintain formulation and process settings throughout run
| | Benchmark against commercial standard (if applicable)
| | Length of run in context of pad life or slurry pot life |
| Goal | Consistent process performance on all metrics across a reasonable marathon run |
Level 4: Fine Tuning and Process Sensitivities

| Typical Project Status | All formulations frozen
 | Process stability reasonably proven
 | Looking for specific interactions or responses |
|--|--------------------------|
| Typical Metrics | Same as Level 3, but often targeted to highlight specific interactions or customer-driven process responses |
| Types of Tests | Repeatability across multiple batches or lots
 | Process sensitivity to variation in key raw ingredients
 | Time study: staged response through slurry shelf life
 | Wear study: staged response to pad wear
 | Wafer sensitivity to various test wafer sources
 | Residual contamination
 | Etc. |
| Goal | Data showing clear relationship between input variables and output response |
Intro to Examples

- A few examples will help illustrate the groupings of characterization levels just described.
- Note that all examples represent live data taken on various materials polished at TFS.
- Deliberate mix of internal and external data.
- No customer identity is or will be provided.
- Examples are for reference only and do not imply the ultimate capabilities of any of the products or processes used … they are only for illustration.
Screening Example: High rate Cu slurry formulas

Slurry formulation trials on IPEC polisher

CMP Data Summary Table

<table>
<thead>
<tr>
<th>Slurry #</th>
<th>Rate</th>
<th>Unif.</th>
<th>Ra (Ang)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6440</td>
<td>7.75%</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2880</td>
<td>7.85%</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3132</td>
<td>9.26%</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1725</td>
<td>10.59%</td>
<td>6</td>
<td>Excellent Ra, low rate</td>
</tr>
<tr>
<td>5</td>
<td>3556</td>
<td>5.06%</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2130</td>
<td>7.98%</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2385</td>
<td>4.94%</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4995</td>
<td>5.60%</td>
<td>459</td>
<td>Excessive Ra</td>
</tr>
<tr>
<td>9</td>
<td>1590</td>
<td>3.60%</td>
<td>11</td>
<td>Ra ok, low rate</td>
</tr>
<tr>
<td>10</td>
<td>479</td>
<td>9.63%</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>
Screening Example: High rate Cu slurry formulas

If goal is >4kA/min rate, most of these can be eliminated
Process Optimization Example: Thermal Oxide

Optimized process now ready for full marathon, if desired
Baseline Example: Tungsten RR/WIWNU

Expt paused to develop brush conditioning then continued with improved process stability
Baseline Example: Tungsten Process Defectivity

Blanket film low-defect TEOS wafers

Light point defects vs. Polish time

LPD's (raw number)

Polish time (minutes)

pre/post 679/184
pre/post 184/105
Baseline Example: Tungsten Plugs

FE-SEM picture of 0.15um plugs on SKW-5P test wafer polished with baseline W CMP process
Baseline Example: Tungsten Plugs

Cross section SEM of tungsten plug polished with first generation tungsten baseline CMP process.
Baseline Example: Residual Contamination Data

Key Point
- All values from TFS lab are less than or comparable to fab reference

<table>
<thead>
<tr>
<th>#</th>
<th>Element</th>
<th>Mainstream Fab Reference</th>
<th>Baseline on 472 at TFS</th>
<th>Baseline on 372M at TFS</th>
<th>Scrubber Qual</th>
<th>Second Scrubber Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P</td>
<td>108.07</td>
<td>96.28</td>
<td>76.24</td>
<td>80.32</td>
<td>84.78</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>478.7</td>
<td>368.09</td>
<td>389.6</td>
<td>383.63</td>
<td>384.49</td>
</tr>
<tr>
<td>3</td>
<td>Cl</td>
<td>79.84</td>
<td>80.98</td>
<td>66.78</td>
<td>77.42</td>
<td>72.85</td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Ca</td>
<td>5.18</td>
<td>7.74</td>
<td>39.96</td>
<td>5.75</td>
<td>3.62</td>
</tr>
<tr>
<td>6</td>
<td>Sc</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Ti</td>
<td>0.65</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Cr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Mn</td>
<td>0</td>
<td>0</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Fe</td>
<td>179.11</td>
<td>95.44</td>
<td>95.03</td>
<td>0.94</td>
<td>0.45</td>
</tr>
<tr>
<td>12</td>
<td>Co</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Ni</td>
<td>0</td>
<td>0.21</td>
<td>0.08</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Cu</td>
<td>0.1</td>
<td>0.74</td>
<td>3.93</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Zn</td>
<td>0.05</td>
<td>3.38</td>
<td>15.39</td>
<td>0.85</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>W</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

All values represent surface area densities in 1E10 atoms per square cm
Process Sensitivity Example: Slurry Comparison

Baseline oxide process

![Graph showing oxide removal rate and uniformity comparison between Slurry A and Slurry B.](image-url)
Fine Tuning Example: Copper Wafer Defects

- Large particle
- Small particle on oxide
Fine Tuning Example: Copper Wafer Defects

Scratch

Corrosion
Fine Tuning Example: Copper Wafer Defects

Cluster of pits

Prior layer defect
Acknowledgements

Entire staff at TFS, with specific thanks to the following individuals:
• Jeanie Simmons
• Donna Grannis
• Terry Pfau
• Paul Lenkersdorfer
• Roy McCoy
• Jim Dekarske
• Tim Knippa

Many customers who, though unnamed here, have helped us refine the CMP process characterization methods described in this presentation.
Anyone desiring copies of this presentation or wishing to discuss issues related to this talk, please contact one of the following people at TFS:

Rob Rhoades
Chief Technology Officer
Tel: 602 426-8668
Fax: 602 426-8678
rrhoades@totalfabsolutions.com

Bob Tucker
V.P. of Sales & Marketing
Tel: 602 426-8675
Fax: 602 426-8678
btucker@totalfabsolutions.com

Mike Bowman
Director of Business Development
Tel: 602 426-0544
Fax: 602 426-8678
mbowman@totalfabsolutions.com
Additional Information

The following slides contain additional details related to CMP outsourcing.
Reasons to Outsource CMP

Lower Risk
- Immediate access to proven process technology and expertise
- Minimize complexity associated with polishers, cleaners, chemical delivery, filtration, metrology, consumables, etc.

Faster Execution
- Rapid prototyping, development projects or process qualification
- Reduce implementation time an average of 12 to 18 months

Substantial Cost Benefits
- Reduce or eliminate capital expenditures
- Lower unit costs

Production Impact
- Perform engineering trials without taking your polishers off line
- Flexible manufacturing capacity when you need it
CMP Development Project Comparison

Internal Development:
- Capital Investment: $1.5 M
- Several Engrs + Staff: $1.0 M/Yr
- Time to Develop: 18-24 mo.
- Multiple learning cycles

Outsourced Development:
- Capital Investment: $0
- One Sr. Engineer: $150K/Yr
- Time to Develop: 6-9 mo.
- Leverage existing processes, staff, experience, and consulting

Time to Implement:

![Diagram showing time comparison between internal and outsourced development projects.](Image)