Advanced Barrier Slurry Development for 65nm and Beyond

Ken Delbridge, Gert Moyaerts, Gerome Sayles, Saeed Mohseni, & Deepak Mahulikar

Planar Solutions L.L.C.
(Arch/Wacker J.V.)

Contact:
kadelbridge@archchemicals.com
Presentation Overview:

- Advanced barrier CMP requirements
 - Processing requirements
 - Sub 65nm integration issues
- Slurry design methodology
 - Blanket wafer removal rate selectivity
 - Patterned wafer performance
- Defectivity
 - Low-k compatibility
 - Profile control of patterned wafers
- Conclusions
Advanced Barrier Slurry Requirements:

• Processing Requirements
 - Versatile and robust
 - Compatible with multiple integration schemes

• Basic sub 65nm CMP integration issues
 - Direct CMP of k < 2.7 materials (low contamination)
 - Eliminating a new class of killer defects
 - Low-k film stability after CMP, wafer thinning, & packaging
 - Controlling topography with current BKM processes
Advanced Barrier Slurry Overview:

<table>
<thead>
<tr>
<th>ER807X Barrier Slurry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids:</td>
</tr>
<tr>
<td>Silica:</td>
</tr>
<tr>
<td>pH:</td>
</tr>
<tr>
<td>Viscosity:</td>
</tr>
<tr>
<td>Oxidizer:</td>
</tr>
</tbody>
</table>
Slurry design methodology:

• Blanket removal rate selectivity with ER807X
 - Maximized control of Cu, barrier, & CDO materials has been established
 - End-user requirements often demand various selectivities from fab to fab
 - Full control of barrier and low-k removal allows for a dual barrier CMP application:
 - Advanced ALD barrier integration (<65nm processing)
 - Current 90nm-65nm barrier integration
Adjustable Removal Rate Selectivity:

* All work done at 1.5psi on IC1010™ pad with AMAT Mirra platform
* Additive A is a proprietary Planar Solutions mixture
Complete Low-k Removal Control:

* All work done at 1.5psi on IC1010™ pad with AMAT Mirra platform
* Additive B exclusively affects the removal rates of Low-k materials 1 & 2
Slurry design methodology (con):

- Patterned wafer performance with the ER807X family
 - Controlling dishing while minimizing erosion is achieved
 - Adjustable selectivity for CDO integration with or without sacrificial caps
 - Using proprietary additives, controlling dishing & low-k oxide loss has been accomplished
Oxide Loss & Patterned Wafer Removal Rate:

* All work done at 1.5psi on IC1010™ pad with AMAT Mirra platform
* Additive B exclusively affects removal rates of Low-k materials
Dishing & Erosion Control:

All work done at 1.5psi on IC1010™ pad with AMAT Mirra platform
Post Barrier Polish Defectivity:

• Low-k compatibility
 - Slurry must be compatible with direct polish of low-k materials
 - High purity composition eliminates mobile ions

• Profile control of patterned wafers
 - Cu/Barrier/ILD Interface defects must be minimized to prevent void formation and adhesion failure
 - Controlling interface profile will be critical in enabling multi-layer sub 65nm processing
Low-k & TEOS Defectivity:

- ER807X provides similar defectivity on both Low-k and TEOS materials
- Compatible with various integration schemes

All work done at 1.5psi on IC1010™ pad with AMAT Mirra platform
Low-k Patterned Wafer Defectivity:

- ER807X is compatible with both alkaline and acidic clean chemistries
Cu/Barrier/ILD Interface Defects:

- Interface defects are commonly referred to as:
 - Fangs
 - Seam Etch
 - Tiger Teeth
 - Over-erosion
 - Interface Failure

- “Seam Etch” defects greater than 50Å are unacceptable due to voiding issues after subsequent processing steps
- Controlling Seam Etch is critical for barrier slurry performance

Proposed failure mechanism for seam etch defect:

Seam Etch on isolated Cu line

Void formation = ILD Delamination
Seam Etch Defect Control:

* All work done at 1.5psi on IC1010™ pad with AMAT Mirra platform

* All work done at 1.5psi on IC1010™ pad with AMAT Mirra platform
Conclusions:

- A barrier slurry family has been developed to satisfy advanced integration requirements
- Adjustable barrier, Low-k, & Cu selectivity
- Exceptional patterned wafer performance is provided by controlling both dishing & erosion levels
- Excellent ILD defectivity and cleaner compatibility
- Profile control is provided for reducing interface defects

IC1010 is a trademark of Rohm & Haas Company or its affiliates

Applied Materials (AMAT) is a registered trademark of Applied Materials Inc.