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BackgroundBackground
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Pad conditioning is the process of “dressing” the polishing pad
Pad is contacted with an abrasive medium, typically a diamond abrasive 
disc
The conditioning process involves the removal of a thin layer of pad 
material

Conditioning determines the intrinsic asperity structure of the pad
Conditioning acts to maintain surface stability through the removal of 
worn surface material and restoration of the intrinsic structure
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Extremes of Pad SurfacesExtremes of Pad Surfaces

Conditioning Dominated

Wafer Dominated

Abrasive wear results in 
truncation of asperity tips

Pad conditioning restores asperities 
to their intrinsic structure
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Conditioning dominated surface exhibits the intrinsic structure imparted 
by a medium aggressive conditioner
Wafer dominated surfaces exhibits the truncated asperity structure (red 
component in the distribution at lower center) induced by polishing 
many wafers in the absence of conditioning

Intrinsic contribution to distribution in blue at lower center
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Competing EffectsCompeting Effects
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The pad surface structure is determined by the balance between the 
competing effects of pad wear due to pad-wafer contact and pad surface 
restoration due to conditioning

The pad wear rate is a function of process conditions and the consumable set
The conditioner cut rate is a function of the conditioner design and the process 
conditions

· The intrinsic structure of the pad surface is also dependent on the conditioner 
cutting characteristics
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Competing EffectsCompeting Effects

In this example, conditioner cut rate is varied by manipulating the 
intrinsic aggressiveness of the pad conditioner through changes in 
diamond configuration

Pad wear rate is held constant by using an identical process condition and 
consumable set

The effect of increasing cut rate is to reduce the amount of steady-
state glazing on the pad surface
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Competing EffectsCompeting Effects

In this example, pad 
wear rate is varied 
by manipulating 
wafer down-force

The point at far left 
represents a pad 
surface after 
break-in (i.e. zero 
pad wear)

The effect of 
increasing wear rate 
is to increase the 
amount of steady 
state glazing on the 
pad surface
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Conditioner DesignConditioner Design

Pad surface structure is the product of many individual pad-diamond 
crystal interactions

Structure is driven by the cutting characteristics of diamond crystals
Intrinsic pad surface structure can be manipulated through 
conditioner design

Size, shape and density of diamonds on conditioner surface drive cutting 
characteristics and intrinsic surface structure
More aggressive diamonds tend to remove more pad per unit interaction 
and result in more “rough” surface

Diamond Crystal Types
Solid Pad Surface

Diamond
Furrows
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Conditioning and Intrinsic StructureConditioning and Intrinsic Structure
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Pad surface height statistics are significantly affected by conditioning 
aggressiveness

Aggressiveness adjusted through changes in conditioning design
In solid pad, aggressiveness affects roughness

Solid pad has no inherent texture
Intrinsic solid pad surface height distribution nearly Gaussian

In void-filled pad aggressiveness affects near surface region
Roughness of void-filled pad determined by filler material
Conditioning superimposes additional roughness frequency
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Intrinsic Structure vs. Pad WearIntrinsic Structure vs. Pad Wear
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In steady state polishing, surface structure is determined by balance 
between restorative effect of conditioning and destructive effect of wear 
due to pad-wafer contact

Conditioner acts to restore intrinsic structure by removing worn surface 
material
Less aggressive conditioner characterized by lower cut-rate such that more 
wear is evident on the steady-state surface as aggressiveness is reduced

Asperity structure becomes more truncated (lower Diameter/height
ratio) as aggressiveness is decreased
Estimated contact area increases as aggressiveness is decreased

Contact area estimated at 11.3 %, 7.7 % and 2.2 % for the low, medium 
and high aggressive conditioner respectively
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Process EffectsProcess Effects

Increased conditioning down-force results in the removal of more pad 
material shifting the balance between wear and restoration

Below a critical down-force, polish rate will drop with decreasing down-force
Above critical down-force rate saturates with increasing conditioner down-
force

Intrinsic structure does not change significantly with increasing 
conditioner down-force

Once intrinsic structure is restored (wear component is accounted for) 
additional conditioning does not change the structure of the pad surface
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Ex SituEx Situ Rate DecayRate Decay
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Typical “logarithmic” decay of rate after conditioning is suspended
Increase in asperity wear with time corresponds to decrease in polish 
rate
Colloidal slurries induce less significant asperity wear and result in less 
significant rate decay
Conditioning sets initial rate but has little influence after conditioning is 
suspended
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Polish Rate, Slurry and Conditioning Polish Rate, Slurry and Conditioning 

Steady-State Polishing with 100% In Situ Conditioning
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Less aggressive conditioners exhibit more significant deviation from 
maximum polish rate
Colloidal slurries exhibit less significant deviation from maximum rate 
compared to fumed silica slurries
More significant deviation from maximum rate with increased velocity as 
opposed to increased down-force

Low aggressive-fumed silica data set exhibits rate maximization with respect to
velocity
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Polish Rate, Slurry and Conditioning Polish Rate, Slurry and Conditioning 
Steady State Pad Surfaces after In Situ Conditioning with Fumed Slurry
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High aggressive conditioner exhibits the least surface wear and the 
maximum polish rate
Low aggressive conditioner exhibits the most surface wear and the most 
significant polish rate deviation
More significant wear as a result of increase in down-force compared to 
increase in velocity

Increasing down-force driving abrasive wear
This contradicts trend of more significant rate reduction with increase in 
velocity compared to increase in rate

Colloidal slurries induce less significant asperity wear (not shown) 
corresponding to less significant deviation from maximum rate
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Polish Rate and Hydrodynamics Polish Rate and Hydrodynamics 
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Influence of partial lubrication with increasing Sommerfeld number 
explains the more significant rate decrease with increasing relative velocity

Hydrodynamic effects become more significant at low contact pressure (high 
contact area) and high velocity

Aggressively conditioned surfaces are dominated by solid contact
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Estimation of PadEstimation of Pad--Wafer Contact AreaWafer Contact Area
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Using simple elastic model, equate volumetric displacement of ideal 
bulk material with the pad height probability distribution function (pdf) at 
a given applied pressure

Effective spring constant used was obtained by fitting patterned wafer polish 
data to elastic pad model (Lawing & Merchant ECS 2000)
Similar length scale for pad compression 

“Asperities” are defined as the portion of the pad lying above the 
contact plane (dotted line in the figures above)
Estimate of contact coincides with maximum in the component of the 
distribution due to abrasive wear
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Polish Rate and Contact AreaPolish Rate and Contact Area
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Polish rate is maximized with respect to estimated contact area
Increasing ex situ rate trends support this observation

· Wear model demands that surface area increases as a function of time without 
conditioning

Above a critical point rate is proportional to contact area (applied pressure)
Working model is that below a critical contact area rate is limited by absolute 
contact area and not contact pressure
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Conditioning and Planarization Conditioning and Planarization 

Low aggressive conditioning results in more efficient 
planarization

More truncated asperity structure results in preferential polishing on 
high areas and more efficient step removal
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Conditioning and DishingConditioning and Dishing
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Low aggressive conditioning results in less dishing
More truncated asperity structure penetrates less deeply into low lying 
areas
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ConclusionsConclusions

Pad conditioning defines the intrinsic structure of the pad 
surface

Intrinsic pad structure can be adjusted through changes in 
conditioner design

Process and consumable variables adjust the balance 
between pad surface restoration due to conditioning and 
asperity wear due to pad-wafer contact

Conditioner design, conditioner and wafer down-force, 
relative linear velocity, conditioning time and slurry type are 
all significant factors in defining equilibrium pad surface 
structure

Pad surface structure and conditioning have a significant 
effect on CMP process response

Polish rate, planarization performance and hydrodynamic 
effects are heavily influenced by pad conditioning
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