

The Orientation Effects in Shape Evolution in CMP

Edward Hwang, Prof. David Dornfeld

University of California, Berkeley Feb 4th, 2004

CMP User Groups

Dornfeld Research Group

Overview

- Motivations
- Pattern-Density Dependency Model
- Orientation Effects
- Experimental Results
- Analysis
- Conclusions
- Future Work

Motivations

Make finer distinctions in the pattern-density dependency model in order to address ever-decreasing dimensions and ever-increasing complexity of layer pattern, specifically, by introducing the "ORIENTATION EFFECTS" concept.

Pattern-Density Dependency Model

Orientation Effects

- Polish "UNI"- directionally
- stop rotating the wafer
- go across a feature
- Isolated bar features
- placed in both radial and tangential orientations
- enough spacing to prevent proximity effect

Approach

Process Flow

Definition of Geometries

Experimental Result – Tangential features

Analysis – Tangential features

Experimental Result – Radial features

Wafer rotation

No wafer rotation

Analysis – Radial features

Experimental Result – 2D features

Experimental Result – 2D features

Analysis – 2D features

Conclusions

- Designed experiments based on orientation effects as a complementary to the pattern-density dependency model
- Showed different material removal patterns according to the orientation
 - tangential: leading >> trailing
 - radial: near >> far
 - 2D: enhanced removal rate at the corner (leading edge and near edge)
- Explained those patterns in terms of pad motion and abrasives motion

Future Work

- Develop a model based on theoretical analysis
- Try different materials (nitride, poly-Si)
- Study dummy feature replacement and alignment marks in lithography

Acknowledgements

David Dornfeld	ME UC Berkeley
Andrew Neureuther	EE UC Berkeley
Costas Spanos	EE UC Berkeley
Rick Dill	Hitachi

