Role of Glycine-H₂O₂ in Chemical Mechanical Polishing of Copper

V. R. Gorantla, Z. Lu, <u>S. Hegde</u>, E. Matijević, and S. V. Babu

Center for Advanced Material Processing

Clarkson University, NY-13699

Center for Advanced Material Processing, Clarkson University, NY 13699

CMP-UG Conference, San Jose, CA. 4 Feb 2004

Outline

Introduction

- Cu-H₂O₂-glycine interactions
- Packed bed column technique to study chemical and Cu interactions
- Summary
- Acknowledgments

Center for Advanced Material Processing, Clarkson University, NY 13699

Introduction

For effective integration of low-k materials with copper interconnects:

Copper CMP has to become a more chemically driven process rather than mechanically driven process

Introduction (contd..)

Fundamental understanding of chemicals and copper film interactions are necessary to develop slurries that provide:

- High removal rates
- Fewer defects Corrosion pits, Galvanic effects

Chemical factors that play important role during Cu CMP

- \checkmark Chemical interactions between various chemical additives
- ✓ pH of the slurry
- Nature and properties of the modified surface layer during Cu CMP

Mechanism of Cu removal in glycine-H₂O₂ system

(*M.Hariharaputhiran et al; J. of Electrochem. Soc. 147 (10) 3820-3826 (2000))*

✓ Cu-(Gly)₂ complex catalyzes the decomposition of H_2O_2 to [*OH] radicals.

✓ [*OH] radicals are powerful oxidizing agents than H_2O_{2} .

✓ Hydroxyl radicals enhance the removal rates of copper during CMP in glycine-H₂O₂ based slurries

- *OH trapping experiments were performed at pH ~8.0
- Increase in Cu²⁺ ion concentration in glycine-H₂O₂ system at pH ~ 8 showed an increase in [*OH]
- Cu dissolution rates also increased with increase in Cu²⁺ concentration in glycine-peroxide solution at pH ~8
- However, the mechanism at other pH values was not tested

Effect of pH on Cu dissolution rates

pH has a strong effect on Cu dissolution rates

Effect of Cu²⁺ concentration on Cu dissolution rates

Solution composition	pH of the solution	Cu dissolution rates (nm/min)
1 wt% glycine + 5 wt% H_2O_2 + 0.06 wt% $Cu(NO_3)_2$	3.7	225 ± 3
1 wt% glycine + 5 wt% H_2O_2 + 0.125 wt% $Cu(NO_3)_2$	3.4	245 ± 7
1 wt% glycine + 5 wt% H_2O_2 + 1.0 wt% $Cu(NO_3)_2$	2.6	365 ± 9

Cu dissolution rates increased with increase in $[Cu^{2+}]$ in glycine- H_2O_2 system

However, there is change in the pH of the solution (decrease in pH with increasing Cu^{2+} concentration)

Which factor controls Cu dissolution? pH / *OH radicals

Cu dissolution experiments

pH adjusted to that in column-2

Solution composition	Natural pH of the solution in Column-1	Cu dissolution rates in the solutions of Column-1	Cu dissolution rates in 1 wt% glycine + 5 wt% $H_2O_2 \underline{without}$ $\underline{Cu(NO_3)_2}$
1 wt% glycine + 5 wt% $H_2O_2 + 0.06$ wt% Cu(NO ₃) ₂	3.7	225 ± 3	205 ± 3
1 wt% glycine + 5 wt% $H_2O_2 + 0.125$ wt% $Cu(NO_3)_2$	3.4	245 ± 7	250 ± 3
	2.6	365 ± 9	340 ± 42

pH of the solution controls Cu dissolution rates in acidic conditions

Comparison of copper dissolution rates in glycine-H₂O₂ system containing Cu²⁺ ions at pH 4.0 and pH 8.0

Addition of Cu²⁺ ions has an effect on copper dissolution rates at pH 8, but not at pH 4

(M.M.Darj and E.R.Malinowski, Anal. Chem. 1996, 68, pp 1593-1598)

UV/Vis spectroscopy of (Cu²⁺-glycine) in aqueous solutions in the <u>absence of H_2O_2 </u> as a function of pH

Different Cu^{2+} -glycine species at pH 4 and 8 in the absence of H_2O_2

DI water as reference; Solution composition: $[0.01 M Cu^{2+} + 0.1 M Glycine]$

UV/Vis spectroscopy of $(Cu^{2+} - Glycine - H_2O_2)$ in aqueous solution as a function of H_2O_2 concentration at <u>pH = 4</u>

• $Cu(Gly)_2$ complex prevails at pH =4 in the presence of H_2O_2

- Increase in the absorbance at 360 nm with increase in H_2O_2 concentration
- The absorbance at 360 nm represents Cu²⁺-peroxy-glycine complex

DI water as reference; Solution composition: $[0.01 M Cu^{2+} + 0.1 M Glycine + <u>x - wt% H_2O_2]</u>$

UV/Vis spectroscopy of $(Cu^{2+} - Glycine - H_2O_2)$ in aqueous solution as a function of H_2O_2 concentration at <u>pH = 8</u>

- Increase in the absorbance at 360 nm with increase in H₂O₂ concentration
- Absorbance intensity at 360 nm, at pH 8 higher than that at pH 4
- No change in the intensity of the peak at 640 nm (Cu(Gly)₂)

DI water as reference; Solution composition: [0.01 M Cu²⁺ + 0.1 M Glycine + <u>x -wt% H₂O₂</u>]

Literature on Cu – complexing agent interactions in aqueous solutions containing H₂O₂

T. Kaden, and H. Sigel, Helvitica Chimica Acta, 50 (4), p: 947 (1968) and,

H. Sigel, C. Flierl, R. Griesser, J. Am. Chem. Soc., 91 (5), p: 1061 (1969)

- 1. Cu^{2+} and complexing agents (CA) like (ethylenediamine /bipyridine) in the presence of H_2O_2 in alkaline solutions form (Cu-peroxy- CA) complex species. Increase in the absorbance intensity at 360 nm indicates the formation of this species.
- 2. (Cu-peroxy- CA) reacts with H_2O_2 to form O_2 and H_2O and Cu-compounds.

M. H. Robbins and R. S. Drago, J. Catalysis, 170, pp 295-303 (1997)

Copper^(II)-glycine complexes activate H_2O_2 for oxidation of organic substrates through formation of Cu-peroxy complexes.

M. S. Sastry et. al., *J. Inorganic Biochemistry*, 45, pp: 159-167 (1992) The blue precipitate in the system CuO + Glycine + H_2O_2 was shown by element analysis and ESR to be $[Cu(O_2^{2-})(H_3N^+CH_2COO^-)_2(H_2O)]$

Experimental techniques ?

Techniques usually used to investigate interactions between chemical and Cu films:

- Electrochemical experiments (In situ and/or ex situ)
- XPS analysis of the films after CMP and dissolution expts

These techniques give us limited information. For example, chemical byproducts formed and their effects on Cu CMP are not observed

In this study we used packed column technique to investigate the interactions between chemicals of the slurry and Cu films.

This packed column technique was used by us to investigate the interactions (adhesion and detachment) between abrasives and metal/dielectric films*.

(* Z. Lu, S.V. Babu, and E. Matijević, in MRS spring meeting proceedings, 2003)

Particle deposition and detachment Studies: Packed column technique

Suspensions: SiO₂, CeO₂, Fe₂O₃, Al₂O₃

- Additives: surfactants, oxidizers, chelating agents, pH regulation agents
- **Outflow** >> Control temperature and flow rate

Beads: Cu, Ta, SiO₂

Experimental details

Center for Advanced Material Processing, Clarkson University, NY 13699

Experiments with Cu Beads

Experiments with Cu beads

5 wt% $H_2O_2 + 1$ wt% glycine, at pH 8.

CopperThe green precipitate is generatedbeadswith in 5-10 seconds

What impact does {Cu²⁺-(HO₂⁻)-(gly)₂} complex have on CMP of Cu?

CMP experiments on Cu blanket films

Blanket Cu films were polished with 1 wt% glycine + 5 wt% H_2O_2 solutions at pH 5 and 8

Experimental conditions:

Polisher: Westech 372

Wafer size: 6 inch.

Polishing conditions: (Time, Down Pressure (psi), Platen/carrier speed (RPM))

 $(5 \text{ sec}, 2, 40/40) \rightarrow (30 \text{ sec}, 4, 75/75) \rightarrow (5 \text{ sec}, 2, 40/40)$

Ramp up

Polish cycle

Ramp down

Case 1: No DI water rinse

Case 2: DI water rinse

Center for Advanced Material Processing, Clarkson University, NY 13699

CMP of Cu blanket films

Solution composition	Avg. copper polish rate (nm/min)	Avg. surface roughness (nm)	Remarks
1 wt% glycine + 5 wt% H_2O_2 at pH = 5	225	0.9 (few corrosion patches)	No rinse during the polish ramp
1 wt% glycine + 5 wt% H_2O_2 at pH = 8	280	2.0 (Reddish brown patches)	down step
1 wt% glycine + 5 wt% H_2O_2 at pH = 5	180	0.9 (No patches)	5 sec DI water rinse during the
1 wt% glycine + 5 wt% H_2O_2 at pH = 8	245	1.0 (No patches)	polish ramp down step

Corrosion patches on the wafer polished at pH 8. These patches not observed when rinsed with DI water (instead of polish solution) during ramp down step.

Chemical byproducts (Cu-peroxy-glycine complex) generated are corrosive !

Summary

PH of the solution controls Cu dissolution rates in acidic conditions and strongly alkaline conditions

***** Hydroxyl radicals are important at intermediate pH values

 Cu-peroxy-glycine complex concentration increases with increase in pH and H₂O₂ concentration

* The chemical byproducts (Cu-peroxy-glycine complex) may be responsible for corrosion defects during CMP

• Effective transportation of these chemical byproducts away from the wafer could reduce defects

Acknowledgment

This work is supported by INTEL Corporation and SRC.

Center for Advanced Material Processing, Clarkson University, NY 13699