

Integration Issues with Cu CMP

Michael R. Oliver Rodel, Inc. December 3, 2003

Copper CMP Integrated Solutions

Dual Damascene Approach Requirements Impact of Cu Deposition Topography Issues Sensitivity to Defects Summary

Copper Interconnect Integration

Copper interconnect has two structures per level

- >Line
- **≻**Via
- Damascene process fills trench and then polishes away overburden
- Dual damascene patterns and etches both structures before fill and CMP
 - This eliminates one fill and one CMP step

Cu Damascene Architecture

- Copper Damascene Architecture promises significant advantages in both performance and manufacturability
- ILD material can be different for different levels, and also for via and metal levels

RODEL

Copper interconnect is used up to 10 times in back end integration

Each interconnect level built upon the previous level

>Low K dielectrics are generally fragile

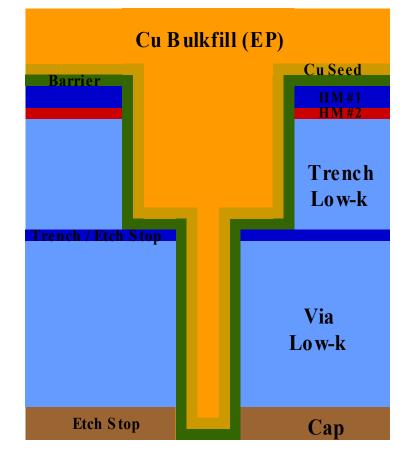
- Porous Low K dielectrics are most sensitive
- These materials evolve generation to generation
- Very low final topography needed for multi-level structures
- Extremely low defect levels required to avoid shorts, opens

RODEL

Types of Low-k Materials

CVD Organosilicate Glass (OSG)

Supplier	Name	k value
Applied Materials	Black Diamond [™]	3.1 – 2.4
Novellus Systems	CORAL [™]	2.85 – 2.2
Trikon Technologies	Flowfill [™] (non- porous) ORION [™] (porous)	2.8 2.2
ASM	Aurora	<3.0
Dow Corning SiCOH		2.7


Spin-On Dielectric (SOD)

Supplier	Name	k value
Shipley	Zirkon [™] (porous)	2.25
Dow Chemical	SiLK™ (non-porous)	2.65
	p-SiLK™ (porous)	<2.4
JSR	LKD-5109 Porous	2.2
Honeywell EM	Nanoglass® (porous)	2.2 – 1.9

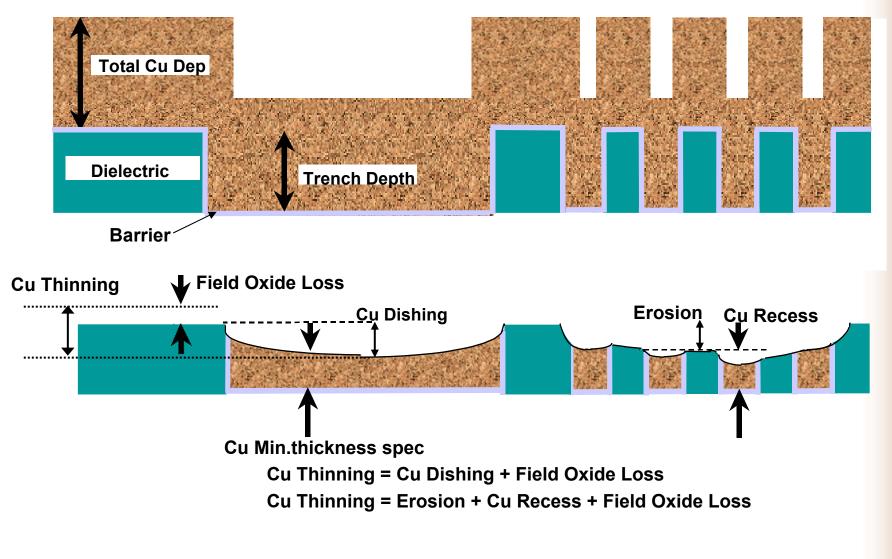
• Reference k values: TEOS (~ 4.5), FSG (~ 3.8)

Copper/Low-K Interconnect

Copper/ Low-K Interconnect Level Integration Approach

- Trench Low-K May be Different From Via Low-K
- Hard Masks May or May Not Be Used

ROCEL



ROCEL Examples of Dual Damascene Low-k Architectures

Definitions for Cu CMP

RODEL

Because of large amount of bulk copper to be removed, and demanding final topography and defect requirements

CMP step divided into multiple sub-steps

- Different steps carried out on different platens
- At barrier removal step, two approaches are being used
 - Selective, with high Ta:Cu, Ta:Dielectric polish rate ratios
 - "Non-selective, with low, but controlled polish rate ratios

Multi-step approach is universally used

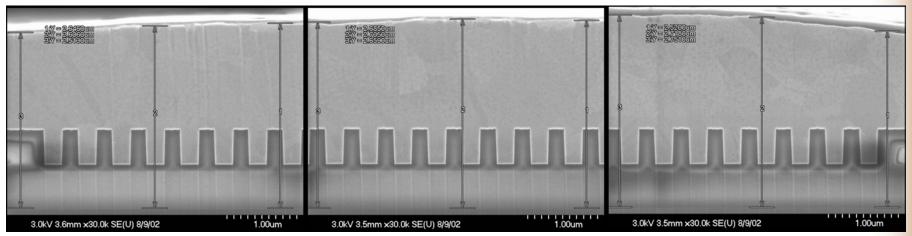
Materials, features determine specific CMP parameters

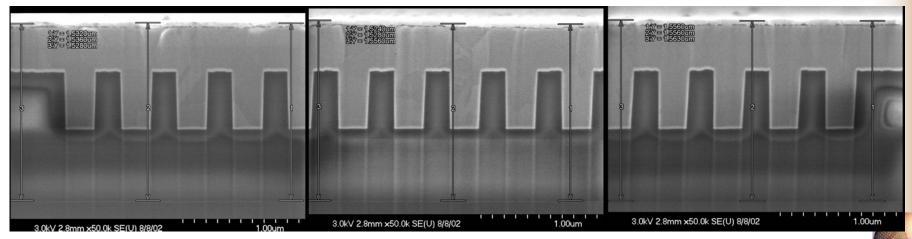
Chemistry

Additives Control Filling Process of Narrow Features

Electrical voltage waveforms

Forward and Reverse Currents Strongly Affect Final Cu Topography

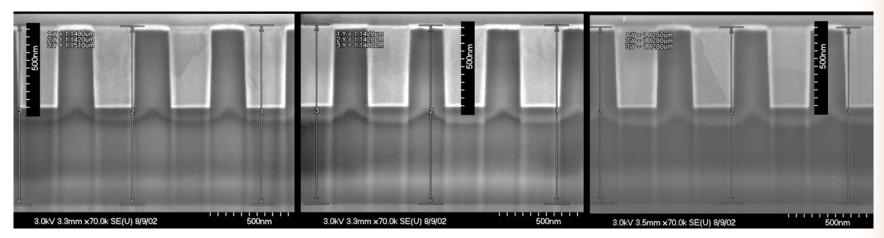

Pattern dimensions, densities also determine topography to be polished



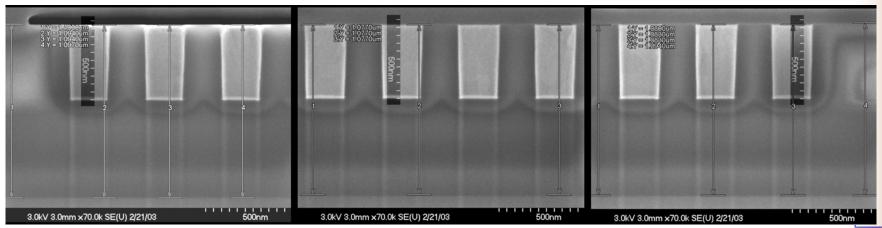
Multi-step CMP Approach

Topography before CMP

Topography after Cu planarization CMP


RODEL, INC. – Decmber 2003

RODEL.


Multi-step CMP Approach –

cont.

Topography after Cu clearing CMP step

Final topography after barrier CMP step

Selective approach does not remove surrounding dielectric, maintains copper thickness in trench In general, no topography correction Non-selective removes some dielectric, also some copper from trench Better topography control achieved Tradeoff is basically copper thickness vs. topography control

RODE arrier Low-K Integration Requirements

Many potential integration schemes with different objectives will require different barrier slurry selectivities

Capping	Stack	Integration requirement	Comment
Uncapped	CDO/TaN/Cu	1. Polish CDO	Planarize CDO
Uncapped	CDO/TaN/Cu	2. Stop on CDO	No planarization or topography correction
Single Cap	CDO/Cap/TaN/Cu	3. Stop on Cap	No planarization or topo correction
Single Cap	CDO/Cap/TaN/Cu	4. Remove Cap and polish CDO5. Thin/Planarize Cap	- Planarize CDO - Planarize Cap
Dual Cap	CDO/Cap 2/Cap 1/TaN/Cu	6. Remove Caps & polish CDO7. Remove top Cap 1 and Thin Bottom Cap 2	Planarize CDO
Dual Cap	CDO/Cap 2/Cap 1/TaN/Cu	8. Remove top Cap 1 and Stop on bottom Cap 2	No planarization or topography correction
Dual Cap	CDO/Cap 2/Cap 1/TaN/Cu	9. Remove top Cap 1, Remove bottom Cap, Stop on CDO	No planarization or topography correction

Initially, both approaches were intensively developed

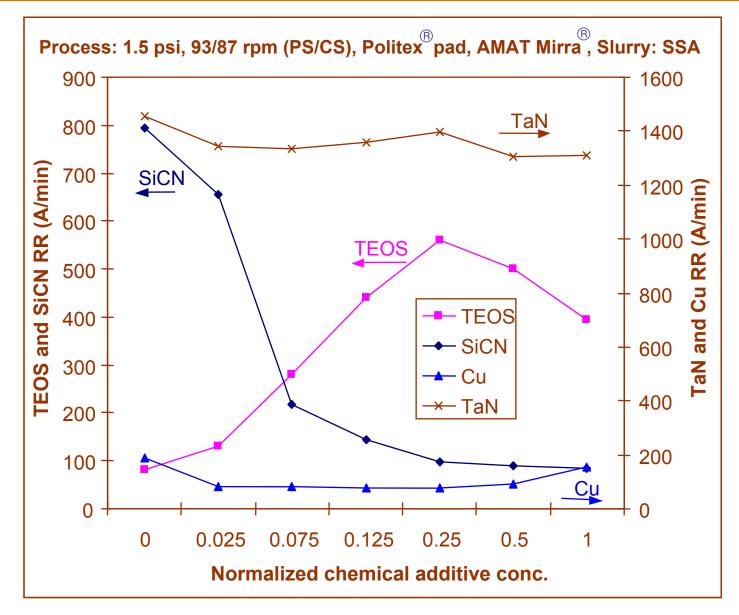
Currently, non-selective is the preferred approach

Topography control has become more critical than maintaining copper thickness in trench

There is, as yet, no industry "standard" approach

- Different integration approaches used
- Different low-K dielectrics used
- Different cap and mask layers used
- These problems are not likely to diminish in near future, with new and better low-K materials being introduced
 - Each material has different polish characteristics
 - Some low-K materials, especially porous ones, are extremely fragile and require low pressure, near 1 psi, and special slurry abrasives and pads

ROCC dustry Solution for Non-selective Approach


Develop family of variable, tunable, second-step slurries

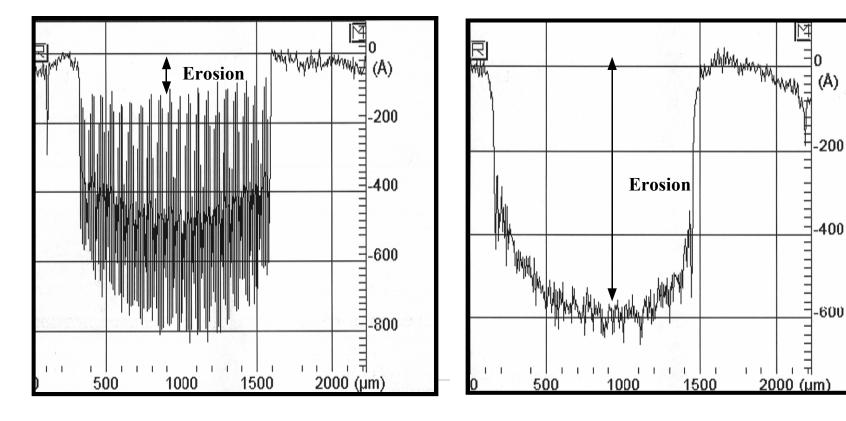
Slurry formulations can be adjusted to minimize topography for each integration/materials approach

This approach is becoming widely adopted

ROCEL Non-selective TEOS/SiCN RR Control

RODEL, INC. – Decmber 2003

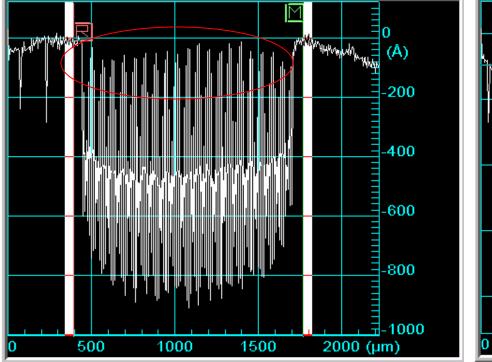
Topography

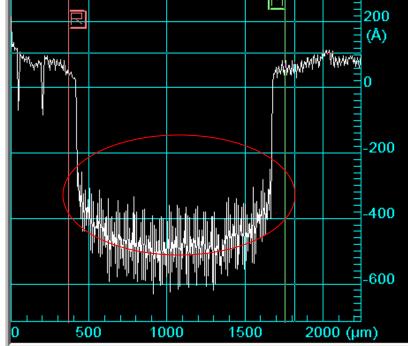

- Both dishing and erosion are very important to minimize for good topography control
- In non-selective approach, erosion is often the more difficult problem to address

RODEL

Erosion at high-density lines

Problem


(after platen 2)


(after platen 3)

High Selectivity Cu:Ta Reactive Liquid Erosion Profiles

Very little dielectric erosion with Reactive Liquid

Higher dielectric erosion with abrasive-containing slurry

ROCEL Defects Will Always Be a Key Issue

With new materials and more aggressive integration approaches, defect reduction will always become more demanding

- New defect modes will likely arise from new integration approaches
 - Yield limitations
 - Reliability limitations

ROCEL

Scratches are CMP Process Dependent

Conventional slurry 1

SSA Slurry

Manual 1/2

2 Mamual

> V-HORG structure polished by SSA slurry

Integration of Copper-Low K interconnect creates a demanding list of requirements

Some have little impact on CMP

- CMP development efforts are focused on the rest
- Tunable slurry approach produced needed flexibility for large number of specific integration, materials approaches

Current persistent Issues

- Topography is major current problem
 - Much to be gained with further improvements
 - Tightening integration requirements will continue to drive better processes

Defects are largest current and, likely, future problem

- Materials (Cu, low-K dielectrics) are soft, easily scratched
- Hydrophobic low-K materials hard to clean
- Overall levels must be consistently reduced
- Less mechanical stress CMP will be needed to deal with new fragile materials
 - May require substantial change in approach

Acknowledgements

John QuanciTodd Buley

