Modeling of Pattern Dependent Pressure Non-uniformity at Die-scale for an Integrated CMP model

12/03/2003

Jihong Choi Department of Mechanical Engineering University of California, Berkeley

Contents

- Contact wear model and pattern density model
- FEM modeling
- Result and comparison with pattern density based oxide CMP model (MIT model)
- DOE tests with FEM model
- Future works

Contact wear model and pattern density model

Pattern density effect in CMP

Contact wear model

$$w(x, y) = \frac{(1 - v^2)}{\pi E} \int_{w} p(\xi, \eta) \frac{1}{\sqrt{(x - \xi)^2 + (y - \eta)^2}} d\xi d\eta$$
$$P = \int_{w} p(\xi, \eta) d\xi d\eta$$

$$w(x, y) = f(x, y) + c , (x, y) \in w$$

$$w(x, y) \rangle f(x, y) + c , (x, y) \notin w$$

$$p(x, y) \ge 0 , (x, y) \in w$$

$$p(x, y) = 0 , (x, y) \notin w$$

w(x, y) : displacement of the surface

$$p(\xi, \eta)$$
 : contact pressure

 $\frac{\partial f(x, y, t)}{\partial t} = k(x, y)p(x, y, t)v(x, y, t)$ most promising but computationally too expensive

(O.G.Chekina et al.

J.Electrochem. Soc., Vol 145, June 1998)

Pattern density dependent oxide model

Basic Form of Prestonian Model (empirical):

$$MRR = K_e PV$$

Pattern density oxide model (semi-empirical) :

$$MRR = \frac{K}{\rho(x, y)}$$

Approximation of the local contact pressure :

$$p(x,y) = \frac{K}{K_e V} \frac{1}{\rho(x,y)} = k \frac{1}{\rho(x,y)}$$

Accuracy : ~ a few hundred angstroms

(B.Stine et al. ,Proc. CMP-MIC Conf.

, Santa Clara, CA, Feb.1997)

Evaluation of Pattern Density

Shape of the window for local density evaluation and weighting function should be known

Elliptic weight function from pad deformation profile

Δ

Example of effective pattern density change with PL

Example of an effective pattern density map

FEM modeling

$$p(x,y) = \frac{K}{K_e V} \frac{1}{\rho(x,y)} = k \frac{1}{\rho(x,y)}$$

p(x,y) can be calculated with FEM...

But,

Simplification

Real PAD :

Random pore structure,

Rough surface,

Moving over pattern,

Visco-elasticity

Static model with smooth pad surface without pore :

E', v' = fn (E,v,Velocity,pore density,pore size etc...)

Test pattern design

Constant line width (25um)

Constant space (200um)

FEM Model

Contact stress in constant line width model

Contact stress in constant space model

Result and comparison with pattern density based oxide model

Effective density with elliptic weight function

Density map for const. LW pattern with 40um x 40um cells

Shape of elliptic weight function

Density map for const. space pattern with 40um x 40um cells

Density profile with weight function

Effective pattern density with PL =1mm :

PL for the stress distribution from FEM

$$p(x, y) = \frac{K}{K_e V} \frac{1}{\rho(x, y)} = k \frac{1}{\rho(x, y)}$$

Square sum error :

n

PL :

PL value that minimize square sum error

Jihong Choi University of California, Berkeley

Comparison with pattern density based oxide CMP model

H/L ratio variation

Pad deformation profile

Constant LW pattern

Constant space pattern

DOE test with FEM model

Pressure effect and pad Poisson ratio effect

linear relation between overall pressure and local contact pressure

no significant effect of pad Poisson ratio

Pad stiffness effect

The stiffer the hard layer, the bigger the WIDNU

The stiffer the soft layer, the smaller the WIDNU

2 Level full factorial DOE on FEM model

Eh	Es	Th	Тз	h/1
1740	300	10	10	6.329872
1740	300	10	16	6.774769
1740	300	16	10	5.962938
1740	300	16	16	6.271255
1740	700	10	10	5.48383
1740	700	10	16	5.6845 0 2
1740	700	16	10	5.27297
1740	700	16	16	5.381 0 71
4060	300	10	10	7.943655
4060	300	10	16	9,120535
4060	300	16	10	6.67 0 885
4060	300	16	16	7.787766
4060	700	10	10	6.61927
4060	700	10	16	6.824732
4060	700	16	10	5.803045
4060	700	16	16	6.3 00 478

Th = 1 ~ 1.6 mm

Basic pad design rule from FEM

Interactions between factors :

Response surrace model :

Basic design rule for a stacked CMP pad :

The stiffer the hard layer, the bigger the WIDNU The thicker the hard layer, the smaller the WIDNU The stiffer the soft layer, the smaller the WIDNU The thicker the soft layer, the bigger the WIDNU

Conclusion

- Stress distribution from FEM model shows good correlation with the pattern density based oxide CMP model
- Window size for local contact stress evaluation is dependent on the pattern itself (especially, line space)
- FEM model shows that local contact pressure is dependent upon not only the pattern density but also line width and space
- Pad thickness also has to be considered in CMP modeling along with pad material properties