Minimizing Particles During the Post CMP Cleaning Process

David J. Albrecht, Senior Applications Engineer

- Pressurized delivery system and needle valve
- Rotameter with needle valve
- Peristaltic pump
- Liquid flow controller

Peristaltic pump:

- Generates a significant level of particles
- Reduces uptime and yield due to maintenance, inaccuracy and particle contamination

Liquid flow controller:

- Provides significant benefits for post CMP processes
- Minimizes particle addition to the fluid stream

- Overview of peristaltic pump technology and performance
- Overview of flow controller technology and performance
- Particle test overview and test results
- Summary and conclusions

Peristaltic Pump Technology

- Repeatedly squeezes flexible tube to dispense fluid
- Typically used for blood transfer and medical operations
- Advantage: no dead legs for material to collect

- Fluid flow varies with feed pressure
- Fluid flow with constant pressure varies with time
- No alarms for inaccurate flow conditions
- High maintenance
- Pump tubing generates contaminating particles

Fluid Flow with Constant Pressure

Fluid Flow Varies with Time Due to Tubing and Pump Wear

No Alarms for Inaccurate Flow Conditions

Two conditions that require alarms:

- Inaccurate flow
 Over or under polishing / post CMP cleaning
 Increases scrap and lowers yields
- 2. No flow

Dry polishing / applying no post CMP cleaning fluids

Potential catastrophic product loss

- Pump replacement Approx 1x / year
- Pump calibration Approx 1x / month
- Pump tubing change Approx 1x / 3 month
- Process downtime and labor costs due to maintenance

- Overview of peristaltic pump technology and performance
- Overview of flow controller technology and performance
- Particle test overview and test results
- Summary and conclusions

Upgrading Tools with a Flow Controller

- Provides *consistent* liquid flow rate
- *Increases yield* by providing proper chemical flow
- Reduces possibility of *catastrophic failure*
- Eliminates *particle contamination* from pump tubing
- Eliminates *downtime and labor costs* due to pump maintenance and replacement

- Applications
 - CMP Slurry Dispense
 - Post CMP Cleaning
 - Chemical Blending
 - Wet Etch
 - Wet Cleaning

Design Requirements for a particle-free flow controller:

- Flow measurement technology that contains no moving parts
- Control valve technology that minimizes movement of wetted parts
- Dead volume minimized

Flow $\propto k \sqrt{(P1-P2)}$

- 1% of full-scale flow accuracy
- Response time to new set point or pressure change is 3 seconds
- Easy to integrate, small footprint
- Cost effective, clear return on investment (ROI)
- Provides 0-60 PSIG (0-4.1 Bar) pressure measurement

Integrated Flow Controller

Integrated Flow Controller

- Overview of peristaltic pump technology and performance
- Overview of flow controller technology and performance
- Particle test overview and test results
- Summary and conclusions

- Performed at Technology Characterization Laboratory, Entegris, Inc
- Ultrapure DI water
- PMS Liquistat Particle Counter
- Masterflex Pump Head (Model A-07015-20)
- Norprene High Performance Precision Pump Tubing (Model A-06402-15 L/S15)
- Two Liquid Flow Controllers (Model 6500)

Schematic of the Test Set-up for Peristaltic Pump Particle Generation

Schematic of the Test Set-up for Flow Controller Particle Generation

Test Results: Peristaltic Pump and Flow Controller Particle

SEM photograph of particles released from the peristaltic pump, collected on a 47mm Polycarbonate membrane, approximately 170 Liters of water from start of test.

EDS spectrum of a typical particle Note: High Si and Al content

www.nt-intl.com

Note: High Al and Si content, which supports the hypothesis that the particles are from the tubing.

www.nt-intl.com

Peristaltic pump:

- Generates a significant level of particles
- Reduces uptime and yield due to maintenance, inaccuracy and particle contamination

Liquid flow controller:

- Provides significant benefits for post CMP processes
- Minimizes particle addition to the fluid stream

