Hard Porous PadTM for Copper Low K CMP

Guangwei Wu, Long Nguyen, Galvez Pepito, and Tom West

Thomas West, Inc. 470 Mercury Dr. Sunnyvale, CA 94085

Thomas West Inc.

Outline of the Presentation

- TWI Hard Porous Pad[™]
- Planarization Capability
- Challenge of low K CMP
- Information of low K wafer
- Results of low K wafers
 - Surface finish
 - E-test results
- Summary

Appearance of Pads

Physical Properties

Property	Hard Porous Pad	IC 1000
Thickness / mm	1.2	1.3
Hardness / shore D	51 – 57	52 - 62
Density / g/cm ³	0.61	0.75
Compressibility / %	2.2	2.1
Rebound / %	75	73
Modulus / Mpa	250*	300 **
Pore Size / μm	10 - 100	10 -80

* Bulk modulus from compression measurement; ** storage modulus from DMA @ 40 °C.

Manufacturing Method of Hard Porous Pad

Single layer and continuous manufacturing

Consistency is not limited by technology (sheet vs cake)

Effect of Pad Properties on Polishing Performance

- Removal rate:
 - slurry transport; slurry retention capability
- NU
 - Slurry transport; pad hardness; compressibility
- Defectivity
 - Pad hardness; capability to remove polishing residue
- Planarity / dishing erosion
 - Pad hardness; modulus; stiffness
- Pad life
 - Conditioning method, thermal stability

Features of Hard Porous Pads

- Excellent lot-to-lot, pad-to-pad consistency
- Open pore structure improves slurry transport
 - Can operate at significantly lower flow rate
 - Better non-uniformity
- Open pore structure becomes easier to remove polishing residue
 - Lower defect
- Requires minimal break-in and conditioning
 - Reduce tool down time
 - Extend conditioner lifetime
 - Longer pad life

Step Height Reduction

Thomas West Inc.

October 10, 2002

SEM Cross-Section Profile

50 / 50 micron structure

Dishing and Erosion

Thomas West Inc.

Challenge of Low K CMP

M. Mills & M. McClear: Future Fab Int. Vol 11

Adhesion: barrier / cap; cap / low K; low K / hard mask Mechanical failure: crack; high defect;

Low K Material Properties

Parameter	Spin-On Low K	Method
Туре	Inorganic - Porous	
Dielectric Constant	2.2	CV Dot at 1 MHz
Modulus	3.50 +/-0.1 (0.6µm)	Nanoindentation
Hardness	0.35 +/-0.02 (0.6µm)	Nanoindentation
Pore Size (Average)	2.0 nm	BET
Stability at 425°C	<1%	ITGA at 425°C (%/hr) post cure in N2 ambient
Stress	20 MPa ; Tensile	Flexus
СТЕ	10 ppm/°C	In-Plane Wafer Curvature

Integration Scheme for Porous Inorganic Low K

CMP Process

Copper Removal Cabot 5003 2.5 psi / 110 rpm Barrier Removal Planar 10K-2 / HS T805 2 psi / 110 rpm

Direct CMP of Blanket Porous Low K Films

Pre-CMP

Hitachi T805

Planar 10k-2

• Good adhesion observed between porous low k and oxide cap with barrier slurry polish.

No scratches observed after CMP

Snake Resistance (0.24 / 0.24 micron)

The absolute resistance difference is due to trench depth. The median resistance of low K is proportional to that of oxide wafer. Barrier slurry has minor effect on distribution profile.

Summary

- Hard Porous Pad has been successfully used for copper / low K CMP
 - Good dishing and erosion
 - Good surface finish
- Hard Porous Pad is compatible with different slurries
 - Different barrier slurries has minimal effect on resistance